How small droplets form in turbulent multiphase flows

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
M. Crialesi-Esposito, G. Boffetta, L. Brandt, S. Chibbaro, S. Musacchio
{"title":"How small droplets form in turbulent multiphase flows","authors":"M. Crialesi-Esposito, G. Boffetta, L. Brandt, S. Chibbaro, S. Musacchio","doi":"10.1103/physrevfluids.9.l072301","DOIUrl":null,"url":null,"abstract":"The formation of small droplets and bubbles in turbulent flows is a crucial process in geophysics and engineering, whose underlying physical mechanism remains a puzzle. In this Letter, we address this problem by means of high-resolution numerical simulations, comparing a realistic multiphase configuration with a numerical experiment in which we attenuate the presence of strong velocity gradients either across the whole mixture or in the disperse phase only. Our results show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.l072301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of small droplets and bubbles in turbulent flows is a crucial process in geophysics and engineering, whose underlying physical mechanism remains a puzzle. In this Letter, we address this problem by means of high-resolution numerical simulations, comparing a realistic multiphase configuration with a numerical experiment in which we attenuate the presence of strong velocity gradients either across the whole mixture or in the disperse phase only. Our results show unambiguously that the formation of small droplets is governed by the internal dynamics which occurs during the breakup of large drops and that the high vorticity and the extreme dissipation associated to these events are the consequence and not the cause of the breakup.

Abstract Image

小液滴如何在湍流多相流中形成
在湍流中形成小液滴和气泡是地球物理学和工程学中的一个关键过程,其基本物理机制仍然是一个谜。在这封信中,我们通过高分辨率数值模拟解决了这一问题,将现实的多相配置与数值实验进行了比较,在实验中,我们削弱了整个混合物或仅在分散相中存在的强速度梯度。我们的结果明确显示,小液滴的形成受大液滴破裂时发生的内部动力学的支配,与这些事件相关的高涡度和极度耗散是破裂的结果而不是原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信