The Generalized Gaussian Minkowski Problem

Jiaqian Liu, Shengyu Tang
{"title":"The Generalized Gaussian Minkowski Problem","authors":"Jiaqian Liu, Shengyu Tang","doi":"10.1007/s12220-024-01748-w","DOIUrl":null,"url":null,"abstract":"<p>This article delves into the <span>\\(L_p\\)</span> Minkowski problem within the framework of generalized Gaussian probability space. This type of probability space was initially introduced in information theory through the seminal works of Lutwak et al. (Ann Probab 32(1B):757–774, 2004, IEEE Trans Inf Theory 51(2):473–478, 2005), as well as by Lutwak et al. (IEEE Trans Inf Theory 58(3):1319–1327, 2012). The primary focus of this article lies in examining the existence of this problem. While the variational method is employed to explore the necessary and sufficient conditions for the existence of the normalized Minkowski problem when <span>\\(p \\in \\mathbb {R} \\setminus \\{0\\}\\)</span>, our main emphasis is on the existence of the generalized Gaussian Minkowski problem without the normalization requirement, particularly in the smooth category for <span>\\(p \\ge 1\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1410 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01748-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article delves into the \(L_p\) Minkowski problem within the framework of generalized Gaussian probability space. This type of probability space was initially introduced in information theory through the seminal works of Lutwak et al. (Ann Probab 32(1B):757–774, 2004, IEEE Trans Inf Theory 51(2):473–478, 2005), as well as by Lutwak et al. (IEEE Trans Inf Theory 58(3):1319–1327, 2012). The primary focus of this article lies in examining the existence of this problem. While the variational method is employed to explore the necessary and sufficient conditions for the existence of the normalized Minkowski problem when \(p \in \mathbb {R} \setminus \{0\}\), our main emphasis is on the existence of the generalized Gaussian Minkowski problem without the normalization requirement, particularly in the smooth category for \(p \ge 1\).

广义高斯闵科夫斯基问题
本文在广义高斯概率空间的框架内深入研究了(L_p\)明考夫斯基问题。这类概率空间最初是通过卢特瓦克等人的开创性著作(Ann Probab 32(1B):757-774, 2004, IEEE Trans Inf Theory 51(2):473-478, 2005)以及卢特瓦克等人的著作(IEEE Trans Inf Theory 58(3):1319-1327, 2012)引入信息论的。本文的主要重点在于研究这一问题的存在。虽然本文采用了变分法来探讨当 \(p \in \mathbb {R} \setminus \{0\})时归一化闵科夫斯基问题存在的必要条件和充分条件,但我们的主要重点是研究没有归一化要求的广义高斯闵科夫斯基问题的存在性,尤其是在\(p \ge 1\) 的光滑类别中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信