Homological theory of representations having pure acyclic injective resolutions

Gang Yang, Qihui Li, Junpeng Wang
{"title":"Homological theory of representations having pure acyclic injective resolutions","authors":"Gang Yang, Qihui Li, Junpeng Wang","doi":"arxiv-2407.21660","DOIUrl":null,"url":null,"abstract":"Let $Q$ be a quiver and $R$ an associative ring. A representation by\n$R$-modules of $Q$ is called strongly fp-injective if it admits a pure acyclic\ninjective resolution in the category of representations. It is shown that such\nrepresentations possess many nice properties. We characterize strongly\nfp-injective representations under some mild assumptions, which is closely\nrelated to strongly fp-injective $R$-modules. Subsequently, we use such\nrepresentations to define relative Gorenstein injective representations, called\nGorenstein strongly fp-injective representations, and give an explicit\ncharacterization of the Gorenstein strongly fp-injective representations of\nright rooted quivers. As an application, a model structure in the category of\nrepresentations is given.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $Q$ be a quiver and $R$ an associative ring. A representation by $R$-modules of $Q$ is called strongly fp-injective if it admits a pure acyclic injective resolution in the category of representations. It is shown that such representations possess many nice properties. We characterize strongly fp-injective representations under some mild assumptions, which is closely related to strongly fp-injective $R$-modules. Subsequently, we use such representations to define relative Gorenstein injective representations, called Gorenstein strongly fp-injective representations, and give an explicit characterization of the Gorenstein strongly fp-injective representations of right rooted quivers. As an application, a model structure in the category of representations is given.
具有纯非循环注入决议的表征的同调理论
设 $Q$ 是一个四元环,$R$ 是一个关联环。如果 $Q$ 的 R$ 模块表示在表示范畴中具有纯无循环注入解析,则该表示称为强 fp 注入表示。研究表明,这样的表示具有许多很好的性质。我们在一些温和的假设条件下描述了强 fp-injective 表示,这与强 fp-injective $R$ 模块密切相关。随后,我们利用这种表示定义了相对的戈伦斯坦注入表示,称为戈伦斯坦强fp-注入表示,并给出了直根四元组的戈伦斯坦强fp-注入表示的解释性特征。作为应用,给出了表征范畴中的模型结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信