Fabrizio Minganti, Alberto Mercurio, Fabio Mauceri, Marco Scigliuzzo, Salvatore Savasta, Vincenzo Savona
{"title":"Phonon pumping by modulating the ultrastrong vacuum","authors":"Fabrizio Minganti, Alberto Mercurio, Fabio Mauceri, Marco Scigliuzzo, Salvatore Savasta, Vincenzo Savona","doi":"10.21468/scipostphys.17.1.027","DOIUrl":null,"url":null,"abstract":"The vacuum (i.e., the ground state) of a system in ultrastrong light-matter coupling contains particles that cannot be emitted without any dynamical perturbation and is thus called virtual. We propose a protocol for inducing and observing real mechanical excitations of a mirror enabled by the virtual photons in the ground state of a tripartite system, where a resonant optical cavity is ultrastrongly coupled to a two-level system (qubit) and, at the same time, optomechanically coupled to a mechanical resonator. Real phonons are coherently emitted when the frequency of the two-level system is modulated at a frequency comparable to that of the mechanical resonator and, therefore much lower than the optical frequency. We demonstrate that this hybrid effect is a direct consequence of the virtual photon population in the ground state. Within a classical physics analogy, attaching a weight to a spring only changes its resting position, whereas dynamically modulating the weight makes the system oscillate. In our case, however, the weight is the vacuum itself. We propose and accurately characterize a hybrid superconducting-optomechanical setup based on available state-of-the-art technology, where this effect can be experimentally observed.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"212 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.1.027","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The vacuum (i.e., the ground state) of a system in ultrastrong light-matter coupling contains particles that cannot be emitted without any dynamical perturbation and is thus called virtual. We propose a protocol for inducing and observing real mechanical excitations of a mirror enabled by the virtual photons in the ground state of a tripartite system, where a resonant optical cavity is ultrastrongly coupled to a two-level system (qubit) and, at the same time, optomechanically coupled to a mechanical resonator. Real phonons are coherently emitted when the frequency of the two-level system is modulated at a frequency comparable to that of the mechanical resonator and, therefore much lower than the optical frequency. We demonstrate that this hybrid effect is a direct consequence of the virtual photon population in the ground state. Within a classical physics analogy, attaching a weight to a spring only changes its resting position, whereas dynamically modulating the weight makes the system oscillate. In our case, however, the weight is the vacuum itself. We propose and accurately characterize a hybrid superconducting-optomechanical setup based on available state-of-the-art technology, where this effect can be experimentally observed.