Julia Bojarinova, Irina Demina, Raisa Chetverikova, Olga Babushkina, Arseny Tsvey
{"title":"Sex-specific migration strategies and underlying physiology contribute to spring arrival protandry in a songbird","authors":"Julia Bojarinova, Irina Demina, Raisa Chetverikova, Olga Babushkina, Arseny Tsvey","doi":"10.1007/s00265-024-03499-8","DOIUrl":null,"url":null,"abstract":"<p>In spring, many migrating songbirds exhibit protandry (the phenomenon whereby males precede females in arrival at breeding sites). The reed bunting (<i>Emberiza schoeniclus</i>) is a short-distance European migrant which expresses a high degree of protandry and combines both nocturnal and diurnal movements during migrations. In experimental conditions, we studied the proximate mechanisms of protandry and compared locomotor behavior between spring and autumn migrations. We assumed that captive behavior is a proxy for the behavior that birds demonstrate in the wild. Combined, the analysis of seasonal patterns and circadian dynamics of locomotor activity suggested that male reed buntings depart from wintering grounds by daytime flights approximately two weeks earlier than females. Later, they develop nocturnal activity, take off shortly before dawn and continue their flight for several hours in the morning. We argue that such behavior allows males to benefit from both the advantage of nocturnal flight and an efficient start of foraging, thereby reducing the stopover duration (by minimizing search/settling costs) and increasing the total migration speed. In contrast, females express predominantly nocturnal migratory activity in spring. We observed that in spring males had lower fat reserves compared to females. We suggest that males can forage during diurnal movements and therefore do not need to store large energetic reserves. In contrast, in autumn, both sexes display similar patterns of locomotor activity and fat reserves. Overall, our results describe unique sex-specific migratory behaviour and physiology in reed buntings in spring, which, we assume, contribute to spring arrival protandry in this species.</p>","PeriodicalId":8881,"journal":{"name":"Behavioral Ecology and Sociobiology","volume":"36 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology and Sociobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00265-024-03499-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In spring, many migrating songbirds exhibit protandry (the phenomenon whereby males precede females in arrival at breeding sites). The reed bunting (Emberiza schoeniclus) is a short-distance European migrant which expresses a high degree of protandry and combines both nocturnal and diurnal movements during migrations. In experimental conditions, we studied the proximate mechanisms of protandry and compared locomotor behavior between spring and autumn migrations. We assumed that captive behavior is a proxy for the behavior that birds demonstrate in the wild. Combined, the analysis of seasonal patterns and circadian dynamics of locomotor activity suggested that male reed buntings depart from wintering grounds by daytime flights approximately two weeks earlier than females. Later, they develop nocturnal activity, take off shortly before dawn and continue their flight for several hours in the morning. We argue that such behavior allows males to benefit from both the advantage of nocturnal flight and an efficient start of foraging, thereby reducing the stopover duration (by minimizing search/settling costs) and increasing the total migration speed. In contrast, females express predominantly nocturnal migratory activity in spring. We observed that in spring males had lower fat reserves compared to females. We suggest that males can forage during diurnal movements and therefore do not need to store large energetic reserves. In contrast, in autumn, both sexes display similar patterns of locomotor activity and fat reserves. Overall, our results describe unique sex-specific migratory behaviour and physiology in reed buntings in spring, which, we assume, contribute to spring arrival protandry in this species.
期刊介绍:
The journal publishes reviews, original contributions and commentaries dealing with quantitative empirical and theoretical studies in the analysis of animal behavior at the level of the individual, group, population, community, and species.