{"title":"The Synthesis of Optimal Control Laws Using Isaacs’ Method for the Solution of Differential Games","authors":"Meir Pachter, Isaac E. Weintraub","doi":"10.1007/s10957-024-02490-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we advocate for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems. To make the argument, the vehicle employed is Pontryagin’s canonical optimal control example, which entails a double integrator plant. However, rather than controlling the state to the origin, we require the end state to reach a terminal set that contains the origin in its interior. Indeed, in practice, it is required to control to a prescribed tolerance rather than reach a desired end state; constraining the end state to a terminal manifold of co-dimension n − 1 renders the optimal control problem easier to solve. The global solution of the optimal control problem is obtained and the synthesized optimal control law is in state feedback form. In this respect, two target sets are considered: a smooth circular target and a square target with corners. Closed-loop state-feedback control laws are synthesized that drive the double integrator plant from an arbitrary initial state to the target set in minimum time. This is accomplished using Isaacs’ method for the solution of differential games, which entails dynamic programming (DP), working backward from the usable part of the target set, as opposed to obtaining the optimal trajectories using the necessary conditions for optimality provided by Pontryagin’s Maximum Principle (PMP). In this paper, the case is made for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems by way of the juxtaposition of the PMP and DP methods.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"212 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02490-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we advocate for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems. To make the argument, the vehicle employed is Pontryagin’s canonical optimal control example, which entails a double integrator plant. However, rather than controlling the state to the origin, we require the end state to reach a terminal set that contains the origin in its interior. Indeed, in practice, it is required to control to a prescribed tolerance rather than reach a desired end state; constraining the end state to a terminal manifold of co-dimension n − 1 renders the optimal control problem easier to solve. The global solution of the optimal control problem is obtained and the synthesized optimal control law is in state feedback form. In this respect, two target sets are considered: a smooth circular target and a square target with corners. Closed-loop state-feedback control laws are synthesized that drive the double integrator plant from an arbitrary initial state to the target set in minimum time. This is accomplished using Isaacs’ method for the solution of differential games, which entails dynamic programming (DP), working backward from the usable part of the target set, as opposed to obtaining the optimal trajectories using the necessary conditions for optimality provided by Pontryagin’s Maximum Principle (PMP). In this paper, the case is made for Isaacs’ method for the solution of differential games to be applied to the solution of optimal control problems by way of the juxtaposition of the PMP and DP methods.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.