{"title":"A Spatial Case-Based Reasoning Method for Healthy City Assessment: A Case Study of Middle Layer Super Output Areas (MSOAs) in Birmingham, England","authors":"Shuguang Deng, Wei Liu, Ying Peng, Binglin Liu","doi":"10.3390/ijgi13080271","DOIUrl":null,"url":null,"abstract":"Assessing healthy cities is a crucial strategy for realizing the concept of “health in all policies”. However, most current quantitative assessment methods for healthy cities are predominantly city-level and often overlook intra-urban evaluations. Building on the concept of geographic spatial case-based reasoning (CBR), we present an innovative healthy city spatial case-based reasoning (HCSCBR) model. This model comprehensively integrates spatial relationships and attribute characteristics that impact urban health. We conducted experiments using a detailed multi-source dataset of health environment determinants for middle-layer super output areas (MSOAs) in Birmingham, England. The results demonstrate that our method surpasses traditional data mining techniques in classification performance, offering greater accuracy and efficiency than conventional CBR models. The flexibility of this method permits its application not only in intra-city health evaluations but also in extending to inter-city assessments. Our research concludes that the HCSCBR model significantly improves the precision and reliability of healthy city assessments by incorporating spatial relationships. Additionally, the model’s adaptability and efficiency render it a valuable tool for urban planners and public health researchers. Future research will focus on integrating the temporal dimension to further enhance and refine the healthy city evaluation model, thereby increasing its dynamism and predictive accuracy.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080271","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing healthy cities is a crucial strategy for realizing the concept of “health in all policies”. However, most current quantitative assessment methods for healthy cities are predominantly city-level and often overlook intra-urban evaluations. Building on the concept of geographic spatial case-based reasoning (CBR), we present an innovative healthy city spatial case-based reasoning (HCSCBR) model. This model comprehensively integrates spatial relationships and attribute characteristics that impact urban health. We conducted experiments using a detailed multi-source dataset of health environment determinants for middle-layer super output areas (MSOAs) in Birmingham, England. The results demonstrate that our method surpasses traditional data mining techniques in classification performance, offering greater accuracy and efficiency than conventional CBR models. The flexibility of this method permits its application not only in intra-city health evaluations but also in extending to inter-city assessments. Our research concludes that the HCSCBR model significantly improves the precision and reliability of healthy city assessments by incorporating spatial relationships. Additionally, the model’s adaptability and efficiency render it a valuable tool for urban planners and public health researchers. Future research will focus on integrating the temporal dimension to further enhance and refine the healthy city evaluation model, thereby increasing its dynamism and predictive accuracy.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.