Gradient-Based Recursive Parameter Estimation Methods for a Class of Time-Varying Systems from Noisy Observations

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ning Xu, Qinyao Liu, Feng Ding
{"title":"Gradient-Based Recursive Parameter Estimation Methods for a Class of Time-Varying Systems from Noisy Observations","authors":"Ning Xu, Qinyao Liu, Feng Ding","doi":"10.1007/s00034-024-02776-1","DOIUrl":null,"url":null,"abstract":"<p>It is essential for meeting the stringent real-time demands encountered in actual production scenarios. Employing the low computational complexity of recursive algorithms, some new schemes are developed for the parameter estimation of a class of time-varying systems. The temporal evolution of parameters is characterized through the autoregressive process, facilitating the construction of the identification model with regard to the autoregressive coefficients. Based on the computational efficiency of the gradient search, a parametric autoregression-based stochastic gradient algorithm is derived with an appropriate step size, achieving a compromise between the steepest descent and convergence rate. In order to address the limitation of the low estimation accuracy in gradient algorithms, a parametric autoregression-based multi-innovation stochastic gradient algorithm is explored by making use of the favorable information for corrections. The simulation results are given to demonstrate the effectiveness of the proposed algorithms. Therefore, for a class of time-varying systems whose parameters become the further insight through the autoregressive process, the proposed gradient methods can obtain the parameter estimates faster and more accurately while ensuring the real-time performance of time-varying systems.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02776-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is essential for meeting the stringent real-time demands encountered in actual production scenarios. Employing the low computational complexity of recursive algorithms, some new schemes are developed for the parameter estimation of a class of time-varying systems. The temporal evolution of parameters is characterized through the autoregressive process, facilitating the construction of the identification model with regard to the autoregressive coefficients. Based on the computational efficiency of the gradient search, a parametric autoregression-based stochastic gradient algorithm is derived with an appropriate step size, achieving a compromise between the steepest descent and convergence rate. In order to address the limitation of the low estimation accuracy in gradient algorithms, a parametric autoregression-based multi-innovation stochastic gradient algorithm is explored by making use of the favorable information for corrections. The simulation results are given to demonstrate the effectiveness of the proposed algorithms. Therefore, for a class of time-varying systems whose parameters become the further insight through the autoregressive process, the proposed gradient methods can obtain the parameter estimates faster and more accurately while ensuring the real-time performance of time-varying systems.

Abstract Image

基于梯度的时变系统递归参数估计方法(从噪声观测中得出
这对于满足实际生产场景中遇到的严格实时要求至关重要。利用递归算法的低计算复杂性,为一类时变系统的参数估计开发了一些新方案。参数的时间演变是通过自回归过程来表征的,这为构建与自回归系数有关的识别模型提供了便利。基于梯度搜索的计算效率,推导出了一种基于参数自回归的随机梯度算法,该算法具有适当的步长,实现了最陡峭下降和收敛速度之间的折中。针对梯度算法估计精度低的限制,利用有利信息进行修正,探索了一种基于参数自回归的多创新随机梯度算法。仿真结果证明了所提算法的有效性。因此,对于参数通过自回归过程成为进一步洞察的一类时变系统,所提出的梯度方法可以更快、更准确地获得参数估计,同时确保时变系统的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信