{"title":"Analysis of Road Safety Perception and Influencing Factors in a Complex Urban Environment—Taking Chaoyang District, Beijing, as an Example","authors":"Xinyu Hou, Peng Chen","doi":"10.3390/ijgi13080272","DOIUrl":null,"url":null,"abstract":"Measuring human perception of environmental safety and quantifying the street view elements that affect human perception of environmental safety are of great significance for improving the urban environment and residents’ safety perception. However, domestic large-scale quantitative research on the safety perception of Chinese local cities needs to be deepened. Therefore, this paper chooses Chaoyang District in Beijing as the research area. Firstly, the network safety perception distribution of Chaoyang District is calculated and presented through the CNN model trained based on the perception dataset constructed by Chinese local cities. Then, the street view elements are extracted from the street view images using image semantic segmentation and target detection technology. Finally, the street view elements that affect the road safety perception are identified and analyzed based on LightGBM and SHAP interpretation framework. The results show the following: (1) the overall safety perception level of Chaoyang District in Beijing is high; (2) the number of motor vehicles and the proportion of the area of roads, skies, and sidewalks are the four factors that have the greatest impact on environmental safety perception; (3) there is an interaction between different street view elements on safety perception, and the proportion and number of street view elements have interaction on safety perception; (4) in the sections with the lowest, moderate, and highest levels of safety perception, the influence of street view elements on safety perception is inconsistent. Finally, this paper summarizes the results and points out the shortcomings of the research.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"88 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080272","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring human perception of environmental safety and quantifying the street view elements that affect human perception of environmental safety are of great significance for improving the urban environment and residents’ safety perception. However, domestic large-scale quantitative research on the safety perception of Chinese local cities needs to be deepened. Therefore, this paper chooses Chaoyang District in Beijing as the research area. Firstly, the network safety perception distribution of Chaoyang District is calculated and presented through the CNN model trained based on the perception dataset constructed by Chinese local cities. Then, the street view elements are extracted from the street view images using image semantic segmentation and target detection technology. Finally, the street view elements that affect the road safety perception are identified and analyzed based on LightGBM and SHAP interpretation framework. The results show the following: (1) the overall safety perception level of Chaoyang District in Beijing is high; (2) the number of motor vehicles and the proportion of the area of roads, skies, and sidewalks are the four factors that have the greatest impact on environmental safety perception; (3) there is an interaction between different street view elements on safety perception, and the proportion and number of street view elements have interaction on safety perception; (4) in the sections with the lowest, moderate, and highest levels of safety perception, the influence of street view elements on safety perception is inconsistent. Finally, this paper summarizes the results and points out the shortcomings of the research.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.