{"title":"Age-specific mortality predicts body-mass scaling of offspring mass and number","authors":"Douglas S. Glazier","doi":"10.1007/s10682-024-10307-2","DOIUrl":null,"url":null,"abstract":"<p>Why offspring size and number vary in diverse ways with adult body size is little understood. In my comparative analysis of animal taxa, I show that age-specific mortality predicts the interspecific body-mass (BM) scaling of offspring (egg, embryo, or neonate) mass (OM) and number per clutch (CS) with striking accuracy. Across six animal taxa, the mean ratio of juvenile to adult mortality (m<sub>j</sub>/m<sub>a</sub>) explains 80% and 88% of the variation in BM scaling slopes for OM and CS, respectively. Animal taxa with high parental care and low mj/ma ratios tend to exhibit steeper OM scaling and shallower CS scaling than taxa with low parental care and high m<sub>j</sub>/m<sub>a</sub> ratios. Even the curvature of OM scaling in logarithmic space can be predicted approximately by the difference in the BM scaling slopes of juvenile and adult mortality rates. The overall triangular pattern of variation in OM in relation to BM in animals can be understood in terms of body-size dependent variation in m<sub>j</sub>/m<sub>a</sub>, as well. These results are explained by an ‘age-specific mortality hypothesis’, which posits that OM and CS scaling slopes are functions of the relative emphasis of natural selection on offspring versus parental fitness. Therefore, I recommend that future studies of the body-size scaling of life-history traits should include estimates of age-specific mortality. In general, it is becoming clear that a mortality perspective can provide useful insight into many kinds of biological and ecological scaling relationships.</p>","PeriodicalId":55158,"journal":{"name":"Evolutionary Ecology","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10682-024-10307-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Why offspring size and number vary in diverse ways with adult body size is little understood. In my comparative analysis of animal taxa, I show that age-specific mortality predicts the interspecific body-mass (BM) scaling of offspring (egg, embryo, or neonate) mass (OM) and number per clutch (CS) with striking accuracy. Across six animal taxa, the mean ratio of juvenile to adult mortality (mj/ma) explains 80% and 88% of the variation in BM scaling slopes for OM and CS, respectively. Animal taxa with high parental care and low mj/ma ratios tend to exhibit steeper OM scaling and shallower CS scaling than taxa with low parental care and high mj/ma ratios. Even the curvature of OM scaling in logarithmic space can be predicted approximately by the difference in the BM scaling slopes of juvenile and adult mortality rates. The overall triangular pattern of variation in OM in relation to BM in animals can be understood in terms of body-size dependent variation in mj/ma, as well. These results are explained by an ‘age-specific mortality hypothesis’, which posits that OM and CS scaling slopes are functions of the relative emphasis of natural selection on offspring versus parental fitness. Therefore, I recommend that future studies of the body-size scaling of life-history traits should include estimates of age-specific mortality. In general, it is becoming clear that a mortality perspective can provide useful insight into many kinds of biological and ecological scaling relationships.
期刊介绍:
Evolutionary Ecology is a concept-oriented journal of biological research at the interface of ecology and evolution. We publish papers that therefore integrate both fields of research: research that seeks to explain the ecology of organisms in the context of evolution, or patterns of evolution as explained by ecological processes.
The journal publishes original research and discussion concerning the evolutionary ecology of organisms. These may include papers addressing evolutionary aspects of population ecology, organismal interactions and coevolution, behaviour, life histories, communication, morphology, host-parasite interactions and disease ecology, as well as ecological aspects of genetic processes. The objective is to promote the conceptual, theoretical and empirical development of ecology and evolutionary biology; the scope extends to any organism or system.
In additional to Original Research articles, we publish Review articles that survey recent developments in the field of evolutionary ecology; Ideas & Perspectives articles which present new points of view and novel hypotheses; and Comments on articles recently published in Evolutionary Ecology or elsewhere. We also welcome New Tests of Existing Ideas - testing well-established hypotheses but with broader data or more methodologically rigorous approaches; - and shorter Natural History Notes, which aim to present new observations of organismal biology in the wild that may provide inspiration for future research. As of 2018, we now also invite Methods papers, to present or review new theoretical, practical or analytical methods used in evolutionary ecology.
Students & Early Career Researchers: We particularly encourage, and offer incentives for, submission of Reviews, Ideas & Perspectives, and Methods papers by students and early-career researchers (defined as being within one year of award of a PhD degree) – see Students & Early Career Researchers