Bi-Lagrangian structures and the space of rays

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Wojciech Domitrz, Marcin Zubilewicz
{"title":"Bi-Lagrangian structures and the space of rays","authors":"Wojciech Domitrz, Marcin Zubilewicz","doi":"10.1088/1751-8121/ad65a4","DOIUrl":null,"url":null,"abstract":"This paper focuses on local curvature invariants associated with bi-Lagrangian structures. We establish several geometric conditions that determine when the canonical connection is flat, building on our previous findings regarding divergence-free webs (Domitrz and Zubilewicz 2023 <italic toggle=\"yes\">Anal. Math. Phys.</italic>\n<bold>13</bold> 4). Addressing questions raised by Tabachnikov (1993 <italic toggle=\"yes\">Differ. Geom. Appl.</italic>\n<bold>3</bold> 265–84), we provide complete solutions to two problems: the existence of flat bi-Lagrangian structures within the space of rays induced by a pair of hypersurfaces, and the existence of flat bi-Lagrangian structures induced by tangents to Lagrangian curves in the symplectic plane.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad65a4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on local curvature invariants associated with bi-Lagrangian structures. We establish several geometric conditions that determine when the canonical connection is flat, building on our previous findings regarding divergence-free webs (Domitrz and Zubilewicz 2023 Anal. Math. Phys. 13 4). Addressing questions raised by Tabachnikov (1993 Differ. Geom. Appl. 3 265–84), we provide complete solutions to two problems: the existence of flat bi-Lagrangian structures within the space of rays induced by a pair of hypersurfaces, and the existence of flat bi-Lagrangian structures induced by tangents to Lagrangian curves in the symplectic plane.
双拉格朗日结构和射线空间
本文重点研究与双拉格朗日结构相关的局部曲率不变式。我们在之前关于无发散网的发现(Domitrz and Zubilewicz 2023 Anal.)针对塔巴奇尼科夫(1993 Differ. Geom. Appl.3,265-84)提出的问题,我们提供了两个问题的完整解决方案:一对超曲面诱导的射线空间内平面双拉格朗日结构的存在性,以及交错平面内拉格朗日曲线切线诱导的平面双拉格朗日结构的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信