Arctic curves of the T-system with slanted initial data

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Philippe Di Francesco, Hieu Trung Vu
{"title":"Arctic curves of the T-system with slanted initial data","authors":"Philippe Di Francesco, Hieu Trung Vu","doi":"10.1088/1751-8121/ad65a5","DOIUrl":null,"url":null,"abstract":"We study the <italic toggle=\"yes\">T</italic>-system of type <inline-formula>\n<tex-math><?CDATA $A_\\infty$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi mathvariant=\"normal\">∞</mml:mi></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, also known as the octahedron recurrence/equation, viewed as a <inline-formula>\n<tex-math><?CDATA $2+1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction <inline-formula>\n<tex-math><?CDATA $(r,s,t)\\in {\\mathbb{Z}}_+^3$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>r</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>∈</mml:mo><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mn>3</mml:mn></mml:msubsup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"aad65a5ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The corresponding solutions of the <italic toggle=\"yes\">T</italic>-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The <italic toggle=\"yes\">T</italic>-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad65a5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the T-system of type A , also known as the octahedron recurrence/equation, viewed as a 2+1 -dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction (r,s,t)Z+3 . The corresponding solutions of the T-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The T-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.
带有倾斜初始数据的 T 系统北极曲线
我们研究的是 A∞ 型 T 系统,也称为八面体递推/方程,被视为 2+1 维离散演化方程。根据早先从 "平 "初始数据八面体递归解中得到的阿兹特克钻石北极曲线的研究成果,我们考虑了垂直于任意可允许方向(r,s,t)∈Z+3 的平行 "斜 "平面的初始数据。T 系统的相应解被解释为 Bousquet-Mélou、Propp 和 West 于 2009 年引入的一些合适的 "松果 "图上的二聚体模型的分割函数。T 系统公式和一些均匀或周期情况下的精确解使我们能够探索相应二聚体模型的热力学极限,并推导出精确的北极曲线,将系统的不同阶段分开。这种直接方法绕过了使用卡斯特林矩阵方法的标准二聚体一般理论,而使用了多变量分析组合理论,重点研究了二聚体密度生成函数服从的线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信