The McKinsey Axiom on Weakly Transitive Frames

Pub Date : 2024-07-29 DOI:10.1007/s11225-024-10145-x
Qian Chen, Minghui Ma
{"title":"The McKinsey Axiom on Weakly Transitive Frames","authors":"Qian Chen, Minghui Ma","doi":"10.1007/s11225-024-10145-x","DOIUrl":null,"url":null,"abstract":"<p>The McKinsey axiom <span>\\((\\textrm{M})\\ \\Box \\Diamond p\\rightarrow \\Diamond \\Box p\\)</span> has a local first-order correspondent on the class of all weakly transitive frames <span>\\({{\\mathcal {W}}}{{\\mathcal {T}}}\\)</span>. It globally corresponds to Lemmon’s condition <span>\\(({\\textsf{m}}^\\infty )\\)</span> on <span>\\({{\\mathcal {W}}}{{\\mathcal {T}}}\\)</span>. The formula <span>\\((\\textrm{M})\\)</span> is canonical over the weakly transitive modal logic <span>\\(\\textsf{wK4}={\\textsf{K}}\\oplus p\\wedge \\Box p\\rightarrow \\Box \\Box p\\)</span>. The modal logic <span>\\(\\mathsf {wK4.1}=\\textsf{wK4}\\oplus \\textrm{M}\\)</span> has the finite model property. The modal logics <span>\\(\\mathsf {wK4.1T}_0^n\\)</span> (<span>\\( n&gt;0\\)</span>) form an infinite descending chain in the interval <span>\\([\\mathsf {wK4.1},\\mathsf {K4.1}]\\)</span> and each of them has the finite model property. Thus all the modal logics <span>\\(\\mathsf {wK4.1}\\)</span> and <span>\\(\\mathsf {wK4.1T}_0^n\\)</span> (<span>\\(n&gt;0\\)</span>) are decidable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10145-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The McKinsey axiom \((\textrm{M})\ \Box \Diamond p\rightarrow \Diamond \Box p\) has a local first-order correspondent on the class of all weakly transitive frames \({{\mathcal {W}}}{{\mathcal {T}}}\). It globally corresponds to Lemmon’s condition \(({\textsf{m}}^\infty )\) on \({{\mathcal {W}}}{{\mathcal {T}}}\). The formula \((\textrm{M})\) is canonical over the weakly transitive modal logic \(\textsf{wK4}={\textsf{K}}\oplus p\wedge \Box p\rightarrow \Box \Box p\). The modal logic \(\mathsf {wK4.1}=\textsf{wK4}\oplus \textrm{M}\) has the finite model property. The modal logics \(\mathsf {wK4.1T}_0^n\) (\( n>0\)) form an infinite descending chain in the interval \([\mathsf {wK4.1},\mathsf {K4.1}]\) and each of them has the finite model property. Thus all the modal logics \(\mathsf {wK4.1}\) and \(\mathsf {wK4.1T}_0^n\) (\(n>0\)) are decidable.

分享
查看原文
弱传递框架的麦肯锡公理
麦肯锡公理((\textrm{M})\Box \Diamond p\rightarrow \Diamond \Box p\) 在所有弱传递框架的类\({\mathcal {W}}{{\mathcal {T}}}\)上有一个局部的一阶对应。它在全局上对应于 Lemmon's condition \(({\textsf{m}}^\infty )\) on \({{\mathcal {W}}}{{\mathcal {T}}}\).公式((\textrm{M}))在弱传递模态逻辑(\textsf{wK4}={\textsf{K}})上是典型的。模态逻辑(mathsf {wK4.1}=\textsf{wK4}\oplus \textrm{M})具有有限模型属性。模态逻辑\(\mathsf {wK4.1T}_0^n\) (\( n>0\)) 在区间\([\mathsf {wK4.1},\mathsf {K4.1}]\)中形成了一个无限下降链,并且它们中的每一个都具有有限模型属性。因此所有的模态逻辑((\mathsf {wK4.1}\) and\(\mathsf {wK4.1T}_0^n\) (\(n>0\)) 都是可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信