{"title":"Robust bilevel optimization for near-optimal lower-level solutions","authors":"Mathieu Besançon, Miguel F. Anjos, Luce Brotcorne","doi":"10.1007/s10898-024-01422-z","DOIUrl":null,"url":null,"abstract":"<p>Bilevel optimization problems embed the optimality of a subproblem as a constraint of another optimization problem. We introduce the concept of near-optimality robustness for bilevel optimization, protecting the upper-level solution feasibility from limited deviations from the optimal solution at the lower level. General properties and necessary conditions for the existence of solutions are derived for near-optimal robust versions of general bilevel optimization problems. A duality-based solution method is defined when the lower level is convex, leveraging the methodology from the robust and bilevel literature. Numerical results assess the efficiency of exact and heuristic methods and the impact of valid inequalities on the solution time.\n</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"292 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01422-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Bilevel optimization problems embed the optimality of a subproblem as a constraint of another optimization problem. We introduce the concept of near-optimality robustness for bilevel optimization, protecting the upper-level solution feasibility from limited deviations from the optimal solution at the lower level. General properties and necessary conditions for the existence of solutions are derived for near-optimal robust versions of general bilevel optimization problems. A duality-based solution method is defined when the lower level is convex, leveraging the methodology from the robust and bilevel literature. Numerical results assess the efficiency of exact and heuristic methods and the impact of valid inequalities on the solution time.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.