Ishtiag H. Abdalla, Mervyn W. Mansell, Catherine L. Sole, Gimo M. Daniel
{"title":"Phylogeny and historical biogeography of the southern African lacewing genus Afroptera (Neuroptera: Nemopteridae: Nemopterinae)","authors":"Ishtiag H. Abdalla, Mervyn W. Mansell, Catherine L. Sole, Gimo M. Daniel","doi":"10.1111/syen.12648","DOIUrl":null,"url":null,"abstract":"The lacewing genus <jats:italic>Afroptera</jats:italic> Abdalla & Mansell (Neuroptera: Nemopteridae: Nemopterinae) is endemic to southern Africa, predominantly found in the Fynbos and Succulent Karoo biomes. The taxonomy of the genus has been recently resolved. However, the monophyly and evolutionary history of the genus has never been addressed. This study employs an integrative phylogenetic approach, by incorporating three ribosomal genes (16S, 28S and 18S) and two protein‐coding genes (cytochrome oxidase subunit I and carbamoyl‐phosphate synthetase‐aspartate transcarbamoylase‐dihydroorotase), and morphological data to examine the monophyly and historical biogeography of <jats:italic>Afroptera</jats:italic>. We use Bayesian, parsimony and maximum likelihood phylogenetic methods to assess the monophyly and relatedness of <jats:italic>Afroptera</jats:italic> within the Nemopterinae. We also use ancestral range reconstruction and diversification analysis to infer the historical biogeography of the genus. Our analyses reveal the genus as a monophyletic lineage. The genus <jats:italic>Afroptera</jats:italic> originated during the Pliocene (5.24–3.13 Mya) in a desert environment, experiencing rapid speciation during the Pleistocene, primarily within the Fynbos and Succulent biomes; and secondarily dispersed into the Nama Karoo and Savannah (Kalahari) biomes. The current distribution patterns of <jats:italic>Afroptera</jats:italic> species likely stem from intensified aridification in the southwest during the Plio‐Pleistocene, consistent with the dry‐adapted nature of <jats:italic>Afroptera's</jats:italic> ancestors. Therefore, our findings suggest a climatically driven diversification model for the genus <jats:italic>Afroptera</jats:italic>.","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"96 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/syen.12648","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lacewing genus Afroptera Abdalla & Mansell (Neuroptera: Nemopteridae: Nemopterinae) is endemic to southern Africa, predominantly found in the Fynbos and Succulent Karoo biomes. The taxonomy of the genus has been recently resolved. However, the monophyly and evolutionary history of the genus has never been addressed. This study employs an integrative phylogenetic approach, by incorporating three ribosomal genes (16S, 28S and 18S) and two protein‐coding genes (cytochrome oxidase subunit I and carbamoyl‐phosphate synthetase‐aspartate transcarbamoylase‐dihydroorotase), and morphological data to examine the monophyly and historical biogeography of Afroptera. We use Bayesian, parsimony and maximum likelihood phylogenetic methods to assess the monophyly and relatedness of Afroptera within the Nemopterinae. We also use ancestral range reconstruction and diversification analysis to infer the historical biogeography of the genus. Our analyses reveal the genus as a monophyletic lineage. The genus Afroptera originated during the Pliocene (5.24–3.13 Mya) in a desert environment, experiencing rapid speciation during the Pleistocene, primarily within the Fynbos and Succulent biomes; and secondarily dispersed into the Nama Karoo and Savannah (Kalahari) biomes. The current distribution patterns of Afroptera species likely stem from intensified aridification in the southwest during the Plio‐Pleistocene, consistent with the dry‐adapted nature of Afroptera's ancestors. Therefore, our findings suggest a climatically driven diversification model for the genus Afroptera.
期刊介绍:
Systematic Entomology publishes original papers on insect systematics, phylogenetics and integrative taxonomy, with a preference for general interest papers of broad biological, evolutionary or zoogeographical relevance.