An efficient hybrid differential evolution-golden jackal optimization algorithm for multilevel thresholding image segmentation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianmeng Meng, Linglong Tan, Yueqin Wang
{"title":"An efficient hybrid differential evolution-golden jackal optimization algorithm for multilevel thresholding image segmentation","authors":"Xianmeng Meng, Linglong Tan, Yueqin Wang","doi":"10.7717/peerj-cs.2121","DOIUrl":null,"url":null,"abstract":"Image segmentation is a crucial process in the field of image processing. Multilevel threshold segmentation is an effective image segmentation method, where an image is segmented into different regions based on multilevel thresholds for information analysis. However, the complexity of multilevel thresholding increases dramatically as the number of thresholds increases. To address this challenge, this article proposes a novel hybrid algorithm, termed differential evolution-golden jackal optimizer (DEGJO), for multilevel thresholding image segmentation using the minimum cross-entropy (MCE) as a fitness function. The DE algorithm is combined with the GJO algorithm for iterative updating of position, which enhances the search capacity of the GJO algorithm. The performance of the DEGJO algorithm is assessed on the CEC2021 benchmark function and compared with state-of-the-art optimization algorithms. Additionally, the efficacy of the proposed algorithm is evaluated by performing multilevel segmentation experiments on benchmark images. The experimental results demonstrate that the DEGJO algorithm achieves superior performance in terms of fitness values compared to other metaheuristic algorithms. Moreover, it also yields good results in quantitative performance metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) measurements.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2121","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation is a crucial process in the field of image processing. Multilevel threshold segmentation is an effective image segmentation method, where an image is segmented into different regions based on multilevel thresholds for information analysis. However, the complexity of multilevel thresholding increases dramatically as the number of thresholds increases. To address this challenge, this article proposes a novel hybrid algorithm, termed differential evolution-golden jackal optimizer (DEGJO), for multilevel thresholding image segmentation using the minimum cross-entropy (MCE) as a fitness function. The DE algorithm is combined with the GJO algorithm for iterative updating of position, which enhances the search capacity of the GJO algorithm. The performance of the DEGJO algorithm is assessed on the CEC2021 benchmark function and compared with state-of-the-art optimization algorithms. Additionally, the efficacy of the proposed algorithm is evaluated by performing multilevel segmentation experiments on benchmark images. The experimental results demonstrate that the DEGJO algorithm achieves superior performance in terms of fitness values compared to other metaheuristic algorithms. Moreover, it also yields good results in quantitative performance metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) measurements.
用于多级阈值图像分割的高效混合微分进化-金豺优化算法
图像分割是图像处理领域的一个重要过程。多级阈值分割是一种有效的图像分割方法,根据多级阈值将图像分割成不同的区域进行信息分析。然而,随着阈值数量的增加,多级阈值分割的复杂性也急剧增加。为了应对这一挑战,本文提出了一种新颖的混合算法,即微分进化-金豺优化器(DEGJO),用于以最小交叉熵(MCE)为适配函数的多级阈值图像分割。DE 算法与 GJO 算法相结合,进行位置迭代更新,从而增强了 GJO 算法的搜索能力。在 CEC2021 基准函数上评估了 DEGJO 算法的性能,并与最先进的优化算法进行了比较。此外,通过对基准图像进行多级分割实验,评估了所提算法的功效。实验结果表明,与其他元启发式算法相比,DEGJO 算法在适配值方面表现出色。此外,该算法在峰值信噪比(PSNR)、结构相似性指数(SSIM)和特征相似性指数(FSIM)等定量性能指标上也取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信