Monotone-Cevian and Finitely Separable Lattices

Order Pub Date : 2024-07-30 DOI:10.1007/s11083-024-09678-6
Miroslav Ploščica, Friedrich Wehrung
{"title":"Monotone-Cevian and Finitely Separable Lattices","authors":"Miroslav Ploščica, Friedrich Wehrung","doi":"10.1007/s11083-024-09678-6","DOIUrl":null,"url":null,"abstract":"<p>A distributive lattice with zero is <i>completely normal</i> if its prime ideals form a root system under set inclusion. Every such lattice admits a binary operation <span>\\((x,y)\\mapsto x\\mathbin {\\smallsetminus }y\\)</span> satisfying the rules <span>\\(x\\le y\\vee (x\\mathbin {\\smallsetminus }y)\\)</span> and <span>\\((x\\mathbin {\\smallsetminus }y)\\wedge (y\\mathbin {\\smallsetminus }x)=0\\)</span> — in short a <i>deviation</i>. In this paper we study the following additional properties of deviations: <i>monotone</i> (i.e., isotone in <i>x</i> and antitone in <i>y</i>) and <i>Cevian</i> (i.e., <span>\\(x\\mathbin {\\smallsetminus }z\\le (x\\mathbin {\\smallsetminus }y)\\vee (y\\mathbin {\\smallsetminus }z)\\)</span>). We relate those matters to <i>finite separability</i> as defined by Freese and Nation. We prove that every finitely separable completely normal lattice has a monotone deviation. We pay special attention to lattices of principal <span>\\(\\ell \\)</span>-ideals of Abelian <span>\\(\\ell \\)</span>-groups (which are always completely normal). We prove that for free Abelian <span>\\(\\ell \\)</span>-groups (and also free <span>\\(\\Bbbk \\)</span>-vector lattices) those lattices admit monotone Cevian deviations. On the other hand, we construct an Archimedean <span>\\(\\ell \\)</span>-group with strong unit, of cardinality <span>\\(\\aleph _1\\)</span>, whose principal <span>\\(\\ell \\)</span>-ideal lattice does not have a monotone deviation.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09678-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A distributive lattice with zero is completely normal if its prime ideals form a root system under set inclusion. Every such lattice admits a binary operation \((x,y)\mapsto x\mathbin {\smallsetminus }y\) satisfying the rules \(x\le y\vee (x\mathbin {\smallsetminus }y)\) and \((x\mathbin {\smallsetminus }y)\wedge (y\mathbin {\smallsetminus }x)=0\) — in short a deviation. In this paper we study the following additional properties of deviations: monotone (i.e., isotone in x and antitone in y) and Cevian (i.e., \(x\mathbin {\smallsetminus }z\le (x\mathbin {\smallsetminus }y)\vee (y\mathbin {\smallsetminus }z)\)). We relate those matters to finite separability as defined by Freese and Nation. We prove that every finitely separable completely normal lattice has a monotone deviation. We pay special attention to lattices of principal \(\ell \)-ideals of Abelian \(\ell \)-groups (which are always completely normal). We prove that for free Abelian \(\ell \)-groups (and also free \(\Bbbk \)-vector lattices) those lattices admit monotone Cevian deviations. On the other hand, we construct an Archimedean \(\ell \)-group with strong unit, of cardinality \(\aleph _1\), whose principal \(\ell \)-ideal lattice does not have a monotone deviation.

单旋涡和有限可分网格
如果一个有零的分布格在集合包含的条件下其质心构成一个根系统,那么这个分布格就是完全正常的。每个这样的网格都有一个二元操作((x,y)映射到 x(mathbin {\smallsetminus }y)),满足规则(x(xle y(x(mathbin {\smallsetminus }y))和(((x(mathbin {\smallsetminus }y))wedge(y(mathbin {\smallsetminus }x)=0)--简而言之就是偏差。在本文中,我们将研究偏差的以下附加性质:单调性(即在 x 中是等调的,在 y 中是反调的)和 Cevian 性(即 \(x\mathbin {\smallsetminus }z\le (x\mathbin {\smallsetminus }y)\vee (y\mathbin {\smallsetminus }z)\) )。我们将这些问题与弗雷斯和纳恩定义的有限可分性联系起来。我们证明每个有限可分的完全正态网格都有单调偏差。我们特别关注阿贝尔(\ell \)群的主(\ell \)ideals 的网格(它们总是完全正常的)。我们证明,对于自由的阿贝尔(ell)群(以及自由的(Bbbk)向量网格),这些网格允许单调的塞维恩偏差。另一方面,我们构造了一个具有强单元的阿基米德(Archimedean)群,它的主晶格没有单调偏离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信