Random-Order Interval Selection

Allan Borodin, Christodoulos Karavasilis
{"title":"Random-Order Interval Selection","authors":"Allan Borodin, Christodoulos Karavasilis","doi":"arxiv-2407.20941","DOIUrl":null,"url":null,"abstract":"In the problem of online unweighted interval selection, the objective is to\nmaximize the number of non-conflicting intervals accepted by the algorithm. In\nthe conventional online model of irrevocable decisions, there is an Omega(n)\nlower bound on the competitive ratio, even for randomized algorithms [Bachmann\net al. 2013]. In a line of work that allows for revocable acceptances, [Faigle\nand Nawijn 1995] gave a greedy 1-competitive (i.e. optimal) algorithm in the\nreal-time model, where intervals arrive in order of non-decreasing starting\ntimes. The natural extension of their algorithm in the adversarial (any-order)\nmodel is 2k-competitive [Borodin and Karavasilis 2023], when there are at most\nk different interval lengths, and that is optimal for all deterministic, and\nmemoryless randomized algorithms. We study this problem in the random-order\nmodel, where the adversary chooses the instance, but the online sequence is a\nuniformly random permutation of the items. We consider the same algorithm that\nis optimal in the cases of the real-time and any-order models, and give an\nupper bound of 2.5 on the competitive ratio under random-order arrivals. We also show how to utilize random-order arrivals to extract a random bit\nwith a worst case bias of 2/3, when there are at least two distinct item types.\nWe use this bit to derandomize the barely random algorithm of [Fung et al.\n2014] and get a deterministic 3-competitive algorithm for single-length\ninterval selection with arbitrary weights.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the problem of online unweighted interval selection, the objective is to maximize the number of non-conflicting intervals accepted by the algorithm. In the conventional online model of irrevocable decisions, there is an Omega(n) lower bound on the competitive ratio, even for randomized algorithms [Bachmann et al. 2013]. In a line of work that allows for revocable acceptances, [Faigle and Nawijn 1995] gave a greedy 1-competitive (i.e. optimal) algorithm in the real-time model, where intervals arrive in order of non-decreasing starting times. The natural extension of their algorithm in the adversarial (any-order) model is 2k-competitive [Borodin and Karavasilis 2023], when there are at most k different interval lengths, and that is optimal for all deterministic, and memoryless randomized algorithms. We study this problem in the random-order model, where the adversary chooses the instance, but the online sequence is a uniformly random permutation of the items. We consider the same algorithm that is optimal in the cases of the real-time and any-order models, and give an upper bound of 2.5 on the competitive ratio under random-order arrivals. We also show how to utilize random-order arrivals to extract a random bit with a worst case bias of 2/3, when there are at least two distinct item types. We use this bit to derandomize the barely random algorithm of [Fung et al. 2014] and get a deterministic 3-competitive algorithm for single-length interval selection with arbitrary weights.
随机顺序区间选择
在在线非加权区间选择问题中,目标是最大化算法所接受的非冲突区间的数量。在不可撤销决策的传统在线模型中,即使对于随机算法,竞争率也有一个欧米茄(n)下限[Bachmannet al. 2013]。Faigleand Nawijn 1995 年]在允许可撤销接受的工作中,给出了一种贪婪的 1 竞争(即最优)算法,该算法是在全时模型中,时间间隔按开始时间不递减的顺序到达。他们的算法在对抗(任意阶)模型中的自然扩展是 2k 竞争算法[Borodin 和 Karavasilis 2023],此时最多有 k 个不同的区间长度,而且对于所有确定性算法和无记忆随机算法来说都是最优的。我们在随机序列模型中研究了这个问题,即对手选择实例,但在线序列是项目的均匀随机排列。我们考虑了在实时模型和任意阶模型中最优的相同算法,并给出了随机阶到达下竞争比的上界 2.5。我们还展示了如何利用随机阶次到达来提取一个随机比特,当至少有两种不同的项目类型时,其最坏情况偏差为 2/3。我们利用这个比特对 [Fung 等人.2014] 的勉强随机算法进行去随机化,得到了一个用于具有任意权重的单长间隔选择的确定性 3 竞争性算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信