Fast Static and Dynamic Approximation Algorithms for Geometric Optimization Problems: Piercing, Independent Set, Vertex Cover, and Matching

Sujoy Bhore, Timothy M. Chan
{"title":"Fast Static and Dynamic Approximation Algorithms for Geometric Optimization Problems: Piercing, Independent Set, Vertex Cover, and Matching","authors":"Sujoy Bhore, Timothy M. Chan","doi":"arxiv-2407.20659","DOIUrl":null,"url":null,"abstract":"We develop simple and general techniques to obtain faster (near-linear time)\nstatic approximation algorithms, as well as efficient dynamic data structures,\nfor four fundamental geometric optimization problems: minimum piercing set\n(MPS), maximum independent set (MIS), minimum vertex cover (MVC), and\nmaximum-cardinality matching (MCM). Highlights of our results include the\nfollowing: * For $n$ axis-aligned boxes in any constant dimension $d$, we give an\n$O(\\log \\log n)$-approximation algorithm for MPS that runs in $O(n^{1+\\delta})$\ntime for an arbitrarily small constant $\\delta>0$. This significantly improves\nthe previous $O(\\log\\log n)$-approximation algorithm by Agarwal, Har-Peled,\nRaychaudhury, and Sintos (SODA~2024), which ran in $O(n^{d/2}\\mathop{\\rm\npolylog} n)$ time. * Furthermore, we show that our algorithm can be made fully dynamic with\n$O(n^{\\delta})$ amortized update time. Previously, Agarwal et al.~(SODA~2024)\nobtained dynamic results only in $\\mathbb{R}^2$ and achieved only\n$O(\\sqrt{n}\\mathop{\\rm polylog} n)$ amortized expected update time. * For $n$ axis-aligned rectangles in $\\mathbb{R}^2$, we give an\n$O(1)$-approximation algorithm for MIS that runs in $O(n^{1+\\delta})$ time. Our\nresult significantly improves the running time of the celebrated algorithm by\nMitchell (FOCS~2021) (which was about $O(n^{21})$), and answers one of his open\nquestions. Our algorithm can also be made fully dynamic with $O(n^{\\delta})$\namortized update time. * For $n$ (unweighted or weighted) fat objects in any constant dimension, we\ngive a dynamic $O(1)$-approximation algorithm for MIS with $O(n^{\\delta})$\namortized update time. * For disks in $\\mathbb{R}^2$ or hypercubes in any constant dimension, we\ngive the first fully dynamic $(1+\\varepsilon)$-approximation algorithms for MVC\nand MCM with $O(\\mathop{\\rm polylog}n)$ amortized update time.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"282 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop simple and general techniques to obtain faster (near-linear time) static approximation algorithms, as well as efficient dynamic data structures, for four fundamental geometric optimization problems: minimum piercing set (MPS), maximum independent set (MIS), minimum vertex cover (MVC), and maximum-cardinality matching (MCM). Highlights of our results include the following: * For $n$ axis-aligned boxes in any constant dimension $d$, we give an $O(\log \log n)$-approximation algorithm for MPS that runs in $O(n^{1+\delta})$ time for an arbitrarily small constant $\delta>0$. This significantly improves the previous $O(\log\log n)$-approximation algorithm by Agarwal, Har-Peled, Raychaudhury, and Sintos (SODA~2024), which ran in $O(n^{d/2}\mathop{\rm polylog} n)$ time. * Furthermore, we show that our algorithm can be made fully dynamic with $O(n^{\delta})$ amortized update time. Previously, Agarwal et al.~(SODA~2024) obtained dynamic results only in $\mathbb{R}^2$ and achieved only $O(\sqrt{n}\mathop{\rm polylog} n)$ amortized expected update time. * For $n$ axis-aligned rectangles in $\mathbb{R}^2$, we give an $O(1)$-approximation algorithm for MIS that runs in $O(n^{1+\delta})$ time. Our result significantly improves the running time of the celebrated algorithm by Mitchell (FOCS~2021) (which was about $O(n^{21})$), and answers one of his open questions. Our algorithm can also be made fully dynamic with $O(n^{\delta})$ amortized update time. * For $n$ (unweighted or weighted) fat objects in any constant dimension, we give a dynamic $O(1)$-approximation algorithm for MIS with $O(n^{\delta})$ amortized update time. * For disks in $\mathbb{R}^2$ or hypercubes in any constant dimension, we give the first fully dynamic $(1+\varepsilon)$-approximation algorithms for MVC and MCM with $O(\mathop{\rm polylog}n)$ amortized update time.
几何优化问题的快速静态和动态逼近算法:穿孔、独立集、顶点覆盖和匹配
我们针对四个基本几何优化问题:最小穿孔集 (MPS)、最大独立集 (MIS)、最小顶点覆盖 (MVC) 和最大卡方匹配 (MCM),开发了简单而通用的技术,以获得更快(接近线性时间)的静态近似算法和高效的动态数据结构。我们的成果重点如下:* 对于任意恒定维度 $d$ 的 $n$ 轴对齐盒,我们给出了一个用于 MPS 的 $O(\log \log n)$近似计算法,对于任意小的常数 $\delta>0$,运行时间为 $O(n^{1+\delta})$。这大大改进了之前由 Agarwal、Har-Peled、Raychaudhury 和 Sintos(SODA~2024)提出的$O(n^{d/2}\mathop{\rmpolylog} n)$近似算法,该算法的运行时间为$O(n^{d/2}\mathop{\rmpolylog} n)$。* 此外,我们还证明了我们的算法可以实现完全动态,只需$O(n^{delta})$的摊销更新时间。在此之前,Agarwal 等人(SODA~2024)只在 $\mathbb{R}^2$ 条件下获得了动态结果,并且只实现了$O(\sqrt{n}\mathop{rm polylog} n)$ 摊销的预期更新时间。* 对于 $\mathbb{R}^2$ 中的 $n$ 轴对齐矩形,我们给出了一种用于 MIS 的 $O(1)$ 近似算法,其运行时间为 $O(n^{1+\delta})$。我们的结果大大改进了米切尔(FOCS~2021)的著名算法的运行时间(约为 $O(n^{21})$),并回答了他的一个公开问题。我们的算法也可以做到完全动态,更新时间为 $O(n^{delta})。* 对于任意常量维度中的 $n$(非加权或加权)胖对象,我们给出了一个动态的 $O(1)$ MIS 近似算法,其摊销更新时间为 $O(n^{\delta})。* 对于 $\mathbb{R}^2$ 中的磁盘或任意常量维度中的超立方体,我们给出了 MVC 和 MCM 的第一个完全动态的 $(1+\varepsilon)$ 近似算法,其摊销更新时间为 $O(\mathop\{rm polylog}n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信