Relative consistency of a finite nonclassical theory incorporating ZF and category theory with ZF

Marcoen J. T. F. Cabbolet, Adrian R. D. Mathias
{"title":"Relative consistency of a finite nonclassical theory incorporating ZF and category theory with ZF","authors":"Marcoen J. T. F. Cabbolet, Adrian R. D. Mathias","doi":"arxiv-2407.18969","DOIUrl":null,"url":null,"abstract":"Recently, in Axioms 10(2): 119 (2021), a nonclassical first-order theory T of\nsets and functions has been introduced as the collection of axioms we have to\naccept if we want a foundational theory for (all of) mathematics that is not\nweaker than ZF, that is finitely axiomatized, and that does not have a\ncountable model (if it has a model at all, that is). Here we prove that T is\nrelatively consistent with ZF. We conclude that this is an important step\ntowards showing that T is an advancement in the foundations of mathematics.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, in Axioms 10(2): 119 (2021), a nonclassical first-order theory T of sets and functions has been introduced as the collection of axioms we have to accept if we want a foundational theory for (all of) mathematics that is not weaker than ZF, that is finitely axiomatized, and that does not have a countable model (if it has a model at all, that is). Here we prove that T is relatively consistent with ZF. We conclude that this is an important step towards showing that T is an advancement in the foundations of mathematics.
包含 ZF 的有限非经典理论与包含 ZF 的范畴理论的相对一致性
最近,在《公理 10(2):119 (2021)一文中,介绍了一个关于集合与函数的非经典一阶理论T,如果我们想要一个不弱于ZF、有限公理化、没有可解释模型(如果它有模型的话)的(所有)数学基础理论,那么T就是我们必须接受的公理集合。在此,我们证明 T 与 ZF 相对一致。我们的结论是,这是朝着证明 T 是数学基础的进步迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信