{"title":"Optimization Inverse Spectral Problem for the One-Dimensional Schrödinger Operator on the Entire Real Line","authors":"V. A. Sadovnichii, Ya. T. Sultanaev, N. F. Valeev","doi":"10.1134/s0012266124040050","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the statement of the optimization inverse spectral problem with incomplete\nspectral data for the one-dimensional Schrödinger operator on the entire axis: for a given\npotential <span>\\(q_0 \\)</span>, find the closest function <span>\\(\\hat {q} \\)</span> such that the first <span>\\(m \\)</span> eigenvalues of the Schrödinger operator\nwith potential <span>\\(\\hat {q}\\)</span> coincide with given values <span>\\(\\lambda _k^*\\in \\mathbb {R} \\)</span>, <span>\\(k={1,\\dots ,m}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the statement of the optimization inverse spectral problem with incomplete
spectral data for the one-dimensional Schrödinger operator on the entire axis: for a given
potential \(q_0 \), find the closest function \(\hat {q} \) such that the first \(m \) eigenvalues of the Schrödinger operator
with potential \(\hat {q}\) coincide with given values \(\lambda _k^*\in \mathbb {R} \), \(k={1,\dots ,m}\).