{"title":"A Mallows-type model averaging estimator for ridge regression with randomly right censored data","authors":"Jie Zeng, Guozhi Hu, Weihu Cheng","doi":"10.1007/s11222-024-10472-y","DOIUrl":null,"url":null,"abstract":"<p>Instead of picking up a single ridge parameter in ridge regression, this paper considers a frequentist model averaging approach to appropriately combine the set of ridge estimators with different ridge parameters, when the response is randomly right censored. Within this context, we propose a weighted least squares ridge estimation for unknown regression parameter. A new Mallows-type weight choice criterion is then developed to allocate model weights, where the unknown distribution function of the censoring random variable is replaced by the Kaplan–Meier estimator and the covariance matrix of random errors is substituted by its averaging estimator. Under some mild conditions, we show that when the fitting model is misspecified, the resulting model averaging estimator achieves optimality in terms of minimizing the loss function. Whereas, when the fitting model is correctly specified, the model averaging estimator of the regression parameter is root-<i>n</i> consistent. Additionally, for the weight vector which is obtained by minimizing the new criterion, we establish its rate of convergence to the infeasible optimal weight vector. Simulation results show that our method is better than some existing methods. A real dataset is analyzed for illustration as well.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"150 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10472-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Instead of picking up a single ridge parameter in ridge regression, this paper considers a frequentist model averaging approach to appropriately combine the set of ridge estimators with different ridge parameters, when the response is randomly right censored. Within this context, we propose a weighted least squares ridge estimation for unknown regression parameter. A new Mallows-type weight choice criterion is then developed to allocate model weights, where the unknown distribution function of the censoring random variable is replaced by the Kaplan–Meier estimator and the covariance matrix of random errors is substituted by its averaging estimator. Under some mild conditions, we show that when the fitting model is misspecified, the resulting model averaging estimator achieves optimality in terms of minimizing the loss function. Whereas, when the fitting model is correctly specified, the model averaging estimator of the regression parameter is root-n consistent. Additionally, for the weight vector which is obtained by minimizing the new criterion, we establish its rate of convergence to the infeasible optimal weight vector. Simulation results show that our method is better than some existing methods. A real dataset is analyzed for illustration as well.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.