Bionic optimization design for the crossbeam of a five-axis machining center based on honeycomb sandwich structures

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Shihao Liu, Ganxing Chen, Mao Lin, Jingru Li, Jiayi Qin
{"title":"Bionic optimization design for the crossbeam of a five-axis machining center based on honeycomb sandwich structures","authors":"Shihao Liu, Ganxing Chen, Mao Lin, Jingru Li, Jiayi Qin","doi":"10.1007/s40430-024-05096-2","DOIUrl":null,"url":null,"abstract":"<p>In order to improve the static and dynamic performance of the crossbeam of five-axis machining centers, a bionic optimization design method based on honeycomb sandwich structures was proposed. The finite element model of a crossbeam was established, and the static and dynamic performance indexes were analyzed. In order to obtain the honeycomb sandwich bionic structure crossbeam, the crossbeam sizes with high static and dynamic performance correlations were obtained using the sensitivity analysis method, and the bionic design for the original crossbeam was carried out based on honeycomb sandwich structures. To select the honeycomb sandwich bionic structure crossbeam with excellent performance, the weight of each index of the total performance of the crossbeam was determined using the analytic hierarchy process, and the variation formula of the total performance of the honeycomb sandwich bionic structure crossbeam was constructed. To obtain the excellent size of the honeycomb sandwich bionic structure crossbeam, the response surface optimization was carried out on the honeycomb sandwich structure crossbeam using the central composite test design method. To select the best candidate points of optimization scheme, the formula for the total performance variation of the crossbeam of the optimized honeycomb sandwich bionic structure was constructed using the analytic hierarchy process. The results show that compared with the original crossbeam, the optimized bionic crossbeam has a small reduction in mass, its maximum total displacement is reduced by 10.16%, its maximum equivalent stress is reduced by 27.61%, its first-order natural frequency is increased by 2.47%, and its second-order natural frequency is increased by 4.85%. The optimization results show that the lightweight of the crossbeam is achieved and its static and dynamic performance is improved, thus proving that the proposed bionic optimization design method based on the honeycomb sandwich structure is reasonable.</p>","PeriodicalId":17252,"journal":{"name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40430-024-05096-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the static and dynamic performance of the crossbeam of five-axis machining centers, a bionic optimization design method based on honeycomb sandwich structures was proposed. The finite element model of a crossbeam was established, and the static and dynamic performance indexes were analyzed. In order to obtain the honeycomb sandwich bionic structure crossbeam, the crossbeam sizes with high static and dynamic performance correlations were obtained using the sensitivity analysis method, and the bionic design for the original crossbeam was carried out based on honeycomb sandwich structures. To select the honeycomb sandwich bionic structure crossbeam with excellent performance, the weight of each index of the total performance of the crossbeam was determined using the analytic hierarchy process, and the variation formula of the total performance of the honeycomb sandwich bionic structure crossbeam was constructed. To obtain the excellent size of the honeycomb sandwich bionic structure crossbeam, the response surface optimization was carried out on the honeycomb sandwich structure crossbeam using the central composite test design method. To select the best candidate points of optimization scheme, the formula for the total performance variation of the crossbeam of the optimized honeycomb sandwich bionic structure was constructed using the analytic hierarchy process. The results show that compared with the original crossbeam, the optimized bionic crossbeam has a small reduction in mass, its maximum total displacement is reduced by 10.16%, its maximum equivalent stress is reduced by 27.61%, its first-order natural frequency is increased by 2.47%, and its second-order natural frequency is increased by 4.85%. The optimization results show that the lightweight of the crossbeam is achieved and its static and dynamic performance is improved, thus proving that the proposed bionic optimization design method based on the honeycomb sandwich structure is reasonable.

Abstract Image

基于蜂窝夹层结构的五轴加工中心横梁仿生优化设计
为了提高五轴加工中心横梁的静态和动态性能,提出了一种基于蜂窝夹层结构的仿生优化设计方法。建立了横梁的有限元模型,分析了横梁的静态和动态性能指标。为了得到蜂窝夹层仿生结构横梁,利用灵敏度分析方法得到了静态和动态性能相关性较高的横梁尺寸,并基于蜂窝夹层结构对原横梁进行了仿生设计。为了选择性能优异的蜂窝夹层仿生结构横梁,利用层次分析法确定了横梁总性能中各指标的权重,并构建了蜂窝夹层仿生结构横梁总性能的变化公式。为获得蜂窝夹层仿生结构横梁的优良尺寸,采用中心复合试验设计方法对蜂窝夹层结构横梁进行了响应面优化。为了选出优化方案的最佳候选点,利用层次分析法构建了优化后的蜂窝夹层仿生结构横梁的总性能变化公式。结果表明,与原横梁相比,优化后的仿生横梁质量略有降低,最大总位移降低了 10.16%,最大等效应力降低了 27.61%,一阶固有频率提高了 2.47%,二阶固有频率提高了 4.85%。优化结果表明,实现了横梁的轻量化,提高了横梁的静态和动态性能,从而证明了所提出的基于蜂窝夹层结构的仿生优化设计方法是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
13.60%
发文量
536
审稿时长
4.8 months
期刊介绍: The Journal of the Brazilian Society of Mechanical Sciences and Engineering publishes manuscripts on research, development and design related to science and technology in Mechanical Engineering. It is an interdisciplinary journal with interfaces to other branches of Engineering, as well as with Physics and Applied Mathematics. The Journal accepts manuscripts in four different formats: Full Length Articles, Review Articles, Book Reviews and Letters to the Editor. Interfaces with other branches of engineering, along with physics, applied mathematics and more Presents manuscripts on research, development and design related to science and technology in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信