On Perfect Balanced Rainbow-Free Colorings and Complete Colorings of Projective Spaces

IF 1 3区 数学 Q1 MATHEMATICS
Lijun Ma, Zihong Tian
{"title":"On Perfect Balanced Rainbow-Free Colorings and Complete Colorings of Projective Spaces","authors":"Lijun Ma, Zihong Tian","doi":"10.1007/s40840-024-01746-9","DOIUrl":null,"url":null,"abstract":"<p>This paper is motivated by the problem of determining the related chromatic numbers of some hypergraphs. A hypergraph <span>\\(\\Pi _{q}(n,k)\\)</span> is defined from a projective space PG<span>\\((n-1,q)\\)</span>, where the vertices are points and the hyperedges are <span>\\((k-1)\\)</span>-dimensional subspaces. For the perfect balanced rainbow-free colorings, we show that <span>\\({\\overline{\\chi }}_{p}(\\Pi _{q}(n,k))=\\frac{q^n-1}{l(q-1)}\\)</span>, where <span>\\(k\\ge \\lceil \\frac{n+1}{2}\\rceil \\)</span> and <i>l</i> is the smallest nontrivial factor of <span>\\(\\frac{q^n-1}{q-1}\\)</span>. For the complete colorings, we prove that there is no complete coloring for <span>\\(\\Pi _{q}(n,k)\\)</span> with <span>\\(2\\le k&lt;n\\)</span>. We also provide some results on the related chromatic numbers of subhypergraphs of <span>\\(\\Pi _{q}(n,k)\\)</span>.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01746-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is motivated by the problem of determining the related chromatic numbers of some hypergraphs. A hypergraph \(\Pi _{q}(n,k)\) is defined from a projective space PG\((n-1,q)\), where the vertices are points and the hyperedges are \((k-1)\)-dimensional subspaces. For the perfect balanced rainbow-free colorings, we show that \({\overline{\chi }}_{p}(\Pi _{q}(n,k))=\frac{q^n-1}{l(q-1)}\), where \(k\ge \lceil \frac{n+1}{2}\rceil \) and l is the smallest nontrivial factor of \(\frac{q^n-1}{q-1}\). For the complete colorings, we prove that there is no complete coloring for \(\Pi _{q}(n,k)\) with \(2\le k<n\). We also provide some results on the related chromatic numbers of subhypergraphs of \(\Pi _{q}(n,k)\).

Abstract Image

论投影空间的完美平衡无彩虹着色和完全着色
本文的灵感来自于确定一些超图的相关色度数的问题。超图 ((pi _{q}(n,k)\)是从投影空间 PG\((n-1,q)\) 定义的,其中顶点是点,超边是((k-1)\)维子空间。对于完美平衡的无彩虹着色,我们证明了\({\overline{chi }}_{p}(\Pi _{q}(n,k))=\frac{q^n-1}{l(q-1)}\),其中\(k\ge \lceil \frac{n+1}{2}\rceil \)和l是\(\frac{q^n-1}{q-1}\)的最小非琐因子。对于完全着色,我们证明不存在有 \(2\le k<n\) 的 \(\Pi _{q}(n,k)\) 的完全着色。我们还提供了一些关于 \(\Pi _{q}(n,k)\) 的子超图的相关色度数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信