Parameters Evolution in Source-Sink Space Population Evolutionary Models

Erin Ashley, Carla Simon Sanz, Simone Servadio, Giovanni Lavezzi
{"title":"Parameters Evolution in Source-Sink Space Population Evolutionary Models","authors":"Erin Ashley, Carla Simon Sanz, Simone Servadio, Giovanni Lavezzi","doi":"arxiv-2407.21000","DOIUrl":null,"url":null,"abstract":"MOCAT-SSEM is a Source-Sink model that predicts the Low Earth Orbit (LEO)\nspace population divided into families using a predefined set of interaction\nparameters. Thanks to data from the Monte Carlo version of the model\n(MOCAT-MC), which propagates singularly every object, it is possible to\nestimate such parameters, assumed as additional stochastic variables. Thus,\nthis paper proposed a new set of parameters so that the new Source-Sink model\nprediction better fits the computationally expensive and accurate MOCAT-MC\nsimulation. Estimation is performed by extracting stochastic quantities from\nthe space population, which has been analyzed to fit common probability density\nfunctions.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MOCAT-SSEM is a Source-Sink model that predicts the Low Earth Orbit (LEO) space population divided into families using a predefined set of interaction parameters. Thanks to data from the Monte Carlo version of the model (MOCAT-MC), which propagates singularly every object, it is possible to estimate such parameters, assumed as additional stochastic variables. Thus, this paper proposed a new set of parameters so that the new Source-Sink model prediction better fits the computationally expensive and accurate MOCAT-MC simulation. Estimation is performed by extracting stochastic quantities from the space population, which has been analyzed to fit common probability density functions.
源-汇空间种群进化模型中的参数演变
MOCAT-SSEM 是一个源-汇模型,它利用一组预定义的相互作用参数对低地轨道 (LEO)空间群进行预测。该模型的蒙特卡洛版本(MOCAT-MC)对每个物体都进行了奇异的传播,利用该版本的数据,可以对这些假定为附加随机变量的参数进行估算。因此,本文提出了一组新的参数,使新的源-汇模型预测能更好地适应计算昂贵而精确的 MOCAT-MC 模拟。估计是通过从空间群中提取随机量来进行的,这些随机量已经过分析,以拟合常见的概率密度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信