Numerical solution, convergence and stability of error to solve quadratic mixed integral equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amr M. S. Mahdy, Mohamed A. Abdou, Doaa Sh. Mohamed
{"title":"Numerical solution, convergence and stability of error to solve quadratic mixed integral equation","authors":"Amr M. S. Mahdy, Mohamed A. Abdou, Doaa Sh. Mohamed","doi":"10.1007/s12190-024-02194-1","DOIUrl":null,"url":null,"abstract":"<p>The main goal of this document is to demonstrate the existence of a unique solution and determine the computational solution of the Quadratic mixed integral equation of Volterra Fredholm type (QMIE) of (2 + 1) dimensional in the space <span>\\({L}_{2}([0,a]\\times [0,b])\\times C[0,T],(T&lt;1).\\)</span> Banach’s fixed-point hypothesis describes questions regarding the existence of the solution as well as its uniqueness. Furthermore, we discuss the convergence of the solution and the stability of the numerical solution’s error. QMIE ultimately results in a set of Quadratic integral equations in position when the quadratic numerical approach is used. Then, using the orthogonal polynomial technique while applying the Jacobi polynomial method, we obtain a nonlinear algebraic system of equations. Several illustrative examples in numerical form are shown below to explain the procedures and all the numerical outcomes are calculated and the corresponding errors are computed according to the Maple 18 program.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02194-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this document is to demonstrate the existence of a unique solution and determine the computational solution of the Quadratic mixed integral equation of Volterra Fredholm type (QMIE) of (2 + 1) dimensional in the space \({L}_{2}([0,a]\times [0,b])\times C[0,T],(T<1).\) Banach’s fixed-point hypothesis describes questions regarding the existence of the solution as well as its uniqueness. Furthermore, we discuss the convergence of the solution and the stability of the numerical solution’s error. QMIE ultimately results in a set of Quadratic integral equations in position when the quadratic numerical approach is used. Then, using the orthogonal polynomial technique while applying the Jacobi polynomial method, we obtain a nonlinear algebraic system of equations. Several illustrative examples in numerical form are shown below to explain the procedures and all the numerical outcomes are calculated and the corresponding errors are computed according to the Maple 18 program.

Abstract Image

求解二次混合积分方程的数值解法、收敛性和误差稳定性
本文的主要目标是证明在空间 \({L}_{2}([0,a]\times [0,b])\times C[0,T],(T<1).\) 中 (2 + 1) 维的 Volterra Fredholm 型二次混合积分方程 (QMIE) 存在唯一解,并确定其计算解。巴纳赫定点假设描述了关于解的存在性及其唯一性的问题。此外,我们还讨论了解的收敛性和数值解误差的稳定性。当使用二次数值方法时,QMIE 最终会产生一组位置二次积分方程。然后,在应用雅可比多项式方法的同时使用正交多项式技术,我们得到了一个非线性代数方程系。下面用几个数值示例来解释这些程序,并根据 Maple 18 程序计算所有数值结果和相应误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信