{"title":"Chiral topologically ordered states on a lattice from vertex operator algebras","authors":"Sopenko,Nikita","doi":"10.4310/atmp.2024.v28.n1.a1","DOIUrl":null,"url":null,"abstract":"We propose a class of pure states of two-dimensional lattice systems realizing topological order associated with unitary rational vertex operator algebras. We show that the states are well-defined in the thermodynamic limit and have exponential decay of correlations. The construction provides a natural way to insert anyons and compute certain topological invariants. It also gives candidates for bosonic states in non-trivial invertible phases, including the $E_8$ phase.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"134 2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2024.v28.n1.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a class of pure states of two-dimensional lattice systems realizing topological order associated with unitary rational vertex operator algebras. We show that the states are well-defined in the thermodynamic limit and have exponential decay of correlations. The construction provides a natural way to insert anyons and compute certain topological invariants. It also gives candidates for bosonic states in non-trivial invertible phases, including the $E_8$ phase.
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.