Chiral topologically ordered states on a lattice from vertex operator algebras

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Sopenko,Nikita
{"title":"Chiral topologically ordered states on a lattice from vertex operator algebras","authors":"Sopenko,Nikita","doi":"10.4310/atmp.2024.v28.n1.a1","DOIUrl":null,"url":null,"abstract":"We propose a class of pure states of two-dimensional lattice systems realizing topological order associated with unitary rational vertex operator algebras. We show that the states are well-defined in the thermodynamic limit and have exponential decay of correlations. The construction provides a natural way to insert anyons and compute certain topological invariants. It also gives candidates for bosonic states in non-trivial invertible phases, including the $E_8$ phase.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2024.v28.n1.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a class of pure states of two-dimensional lattice systems realizing topological order associated with unitary rational vertex operator algebras. We show that the states are well-defined in the thermodynamic limit and have exponential decay of correlations. The construction provides a natural way to insert anyons and compute certain topological invariants. It also gives candidates for bosonic states in non-trivial invertible phases, including the $E_8$ phase.
从顶点算子代数看晶格上的手性拓扑有序态
我们提出了一类二维晶格系统的纯态,它们实现了与单元有理顶点算子代数相关的拓扑秩序。我们证明,这些状态在热力学极限中定义明确,相关性呈指数衰减。这种构造为插入任子和计算某些拓扑不变式提供了一种自然的方法。它还为非三维可逆相(包括 $E_8$ 相)中的玻色态提供了候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信