{"title":"A Bayesian Deep Learning-Based Adaptive Wind Farm Power Prediction Method Within the Entire Life Cycle","authors":"Xiaoming Liu;Jun Liu;Yu Zhao;Yongxin Nie;Jiacheng Liu;Tao Ding","doi":"10.1109/TSTE.2024.3435936","DOIUrl":null,"url":null,"abstract":"Accurate wind power prediction (WPP) is crucial to the secure and stable operation of large-scale power systems, and data-driven WPP methods have recently been widely studied and applied. However, existing data-driven methods cannot be applied to new wind farms due to the lack of operational data. This paper presents a novel Bayesian deep learning-based adaptive wind farm power prediction (BDL-AWFPP) method, which is the first time to utilize the computational fluid dynamics (CFD) simulation results as the prior of BDL-based method, thus avoiding the problem that data-driven approaches cannot be applied to newly constructed wind farms. Firstly, a CFD-based wind farm numerical simulation database and a wind turbine power curve database are established to construct a multi-source heterogeneous prior dataset. Then, the BDL-AWFPP model is proposed to utilize the multi-source heterogeneous prior dataset, which can be updated adaptively with newly acquired operational data and saved periodically throughout the life cycle. And an auxiliary aging assessment method for wind turbines is also developed according to the periodically-saved models. Finally, a stochastic variational inference (SVI)-based parameter updating algorithm is derived for the proposed BDL-AWFPP model. Case studies on an actual wind farm validate the effectiveness of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2663-2674"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10614916/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate wind power prediction (WPP) is crucial to the secure and stable operation of large-scale power systems, and data-driven WPP methods have recently been widely studied and applied. However, existing data-driven methods cannot be applied to new wind farms due to the lack of operational data. This paper presents a novel Bayesian deep learning-based adaptive wind farm power prediction (BDL-AWFPP) method, which is the first time to utilize the computational fluid dynamics (CFD) simulation results as the prior of BDL-based method, thus avoiding the problem that data-driven approaches cannot be applied to newly constructed wind farms. Firstly, a CFD-based wind farm numerical simulation database and a wind turbine power curve database are established to construct a multi-source heterogeneous prior dataset. Then, the BDL-AWFPP model is proposed to utilize the multi-source heterogeneous prior dataset, which can be updated adaptively with newly acquired operational data and saved periodically throughout the life cycle. And an auxiliary aging assessment method for wind turbines is also developed according to the periodically-saved models. Finally, a stochastic variational inference (SVI)-based parameter updating algorithm is derived for the proposed BDL-AWFPP model. Case studies on an actual wind farm validate the effectiveness of the proposed method.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.