Sharmeen Fayyaz, Atia tul-Wahab, Bushra Taj, M. Iqbal Choudhary
{"title":"Positive Regulation of Osteoblast Proliferation and Differentiation in MC3T3- E1 Cells by 7,3′,4′-Trimethoxyflavone","authors":"Sharmeen Fayyaz, Atia tul-Wahab, Bushra Taj, M. Iqbal Choudhary","doi":"10.2174/0118761429305367240725112731","DOIUrl":null,"url":null,"abstract":"Objectives: Increasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of osteoblasts. Methods: Cellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to check the effect of TMF on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed. Results: Our findings report for the first time that 7,3′,4′-trimethoxyflavone is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2 indicating possible activation of Wnt signaling pathway. Conclusion: Taken together, this study identified that 7,3′,4′-trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly due to the activation of Wnt/β-catenin pathway. Thus, demonstrating TMF as naturally occurring agent to promote osteogenesis and prevention of bone fragility, and related disorders.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"30 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0118761429305367240725112731","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Increasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of osteoblasts. Methods: Cellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to check the effect of TMF on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed. Results: Our findings report for the first time that 7,3′,4′-trimethoxyflavone is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2 indicating possible activation of Wnt signaling pathway. Conclusion: Taken together, this study identified that 7,3′,4′-trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly due to the activation of Wnt/β-catenin pathway. Thus, demonstrating TMF as naturally occurring agent to promote osteogenesis and prevention of bone fragility, and related disorders.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.