A note on meromorphic functions on a compact Riemann surface having poles at a single point

V V Hemasundar Gollakota
{"title":"A note on meromorphic functions on a compact Riemann surface having poles at a single point","authors":"V V Hemasundar Gollakota","doi":"arxiv-2407.18286","DOIUrl":null,"url":null,"abstract":"On a compact Riemann surface $X$ of genus $g$, one of the questions is the\nexistence of meromorphic functions having poles at a point $P$ on $X$. One of\nthe theorems is the Weierstrass gap theorem that determines a sequence of $g$\nnumbers $1 < n_k < 2g$, $1 \\leq k \\leq g$ for which a meromorphic function with\nthe order with $n_k$ fails to exist at $P$. In this note, we give proof of the\nWeierstrass gap theorem in cohomology terminology. We see that an interesting\ncombinatorial problem may be formed as a byproduct from the statement of the\nWeierstrass gap theorem.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On a compact Riemann surface $X$ of genus $g$, one of the questions is the existence of meromorphic functions having poles at a point $P$ on $X$. One of the theorems is the Weierstrass gap theorem that determines a sequence of $g$ numbers $1 < n_k < 2g$, $1 \leq k \leq g$ for which a meromorphic function with the order with $n_k$ fails to exist at $P$. In this note, we give proof of the Weierstrass gap theorem in cohomology terminology. We see that an interesting combinatorial problem may be formed as a byproduct from the statement of the Weierstrass gap theorem.
关于紧凑黎曼曲面上有单点极点的微函数的说明
在属$g$的紧凑黎曼曲面$X$上,其中一个问题是在$X$上的点$P$上存在有极点的分形函数。其中一个定理是魏尔斯特拉斯间隙定理(Weierstrass gap theorem),该定理确定了一个$g$数序列:$1 < n_k < 2g$,$1 \leq k \leq g$,对于该序列,在$P$处不存在阶数为$n_k$的分垂函数。在本注中,我们用同调术语证明了韦尔斯特拉斯缺口定理。我们发现,从韦尔斯特拉斯间隙定理的陈述中可以得到一个有趣的组合问题作为副产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信