{"title":"Convexity of the Bergman Kernels on Convex Domains","authors":"Yuanpu Xiong","doi":"arxiv-2407.19254","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a convex domain in $\\mathbb{C}^n$ and $\\varphi$ a convex\nfunction on $\\Omega$. We prove that $\\log{K_{\\Omega,\\varphi}(z)}$ is a convex\nfunction (might be identically $-\\infty$) on $\\Omega$, where\n$K_{\\Omega,\\varphi}$ is the weighted Bergman kernel.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\Omega$ be a convex domain in $\mathbb{C}^n$ and $\varphi$ a convex
function on $\Omega$. We prove that $\log{K_{\Omega,\varphi}(z)}$ is a convex
function (might be identically $-\infty$) on $\Omega$, where
$K_{\Omega,\varphi}$ is the weighted Bergman kernel.