On Decompositions of H-holomorphic functions into quaternionic power series

Michael Parfenov
{"title":"On Decompositions of H-holomorphic functions into quaternionic power series","authors":"Michael Parfenov","doi":"arxiv-2407.21474","DOIUrl":null,"url":null,"abstract":"Based on the full similarity in algebraic properties and differentiation\nrules between quaternionic (H-) holomorphic and complex (C-) holomorphic\nfunctions, we assume that there exists one holistic notion of a holomorphic\nfunction that has a H-representation in the case of quaternions and a\nC-representation in the case of complex variables. We get the essential\ndefinitions and criteria for a quaternionic power series convergence, adapting\ncomplex analogues to the quaternion case. It is established that the power\nseries expansions of any holomorphic function in C- and H-representations are\nsimilar and converge with identical convergence radiuses. We define a\nH-analytic function and prove that every H-holomorphic function is H-analytic.\nSome examples of power series expansions are given.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the full similarity in algebraic properties and differentiation rules between quaternionic (H-) holomorphic and complex (C-) holomorphic functions, we assume that there exists one holistic notion of a holomorphic function that has a H-representation in the case of quaternions and a C-representation in the case of complex variables. We get the essential definitions and criteria for a quaternionic power series convergence, adapting complex analogues to the quaternion case. It is established that the power series expansions of any holomorphic function in C- and H-representations are similar and converge with identical convergence radiuses. We define a H-analytic function and prove that every H-holomorphic function is H-analytic. Some examples of power series expansions are given.
论将 H-holomorphic 函数分解为四元数幂级数
基于四元(H-)全态函数和复元(C-)全态函数在代数性质和微分规则上的完全相似性,我们假定存在一个全态函数的整体概念,它在四元情况下有 H 表示,在复变情况下有 C 表示。我们得到了四元幂级数收敛的基本定义和标准,并将复变类比于四元的情况。我们确定,任何全形函数在 C- 表示和 H- 表示中的幂级数展开都是相似的,并以相同的收敛半径收敛。我们定义了 H- 解析函数,并证明了每个 H-holomorphic 函数都是 H- 解析函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信