On an Internal Characterization of Horocyclically Convex Domains in the Unit Disk

Juan Arango, Hugo Arbeláez, Diego Mejía
{"title":"On an Internal Characterization of Horocyclically Convex Domains in the Unit Disk","authors":"Juan Arango, Hugo Arbeláez, Diego Mejía","doi":"arxiv-2407.21271","DOIUrl":null,"url":null,"abstract":"A proper subdomain $G$ of the unit disk $\\mathbb{D}$ is horocyclically convex\n(horo-convex) if, for every $\\omega \\in \\mathbb{D}\\cap \\partial G$, there\nexists a horodisk $H$ such that $\\omega \\in \\partial H$ and $G\\cap\nH=\\emptyset$. In this paper we give an internal characterization of these\ndomains, namely, that $G$ is horo-convex if and only if any two points can be\njoined inside $G$ by a $C^1$ curve composed with finitely many Jordan arcs with\nhyperbolic curvature in $(-2,2)$. We also give a lower bound for the hyperbolic\nmetric of horo-convex regions and some consequences.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A proper subdomain $G$ of the unit disk $\mathbb{D}$ is horocyclically convex (horo-convex) if, for every $\omega \in \mathbb{D}\cap \partial G$, there exists a horodisk $H$ such that $\omega \in \partial H$ and $G\cap H=\emptyset$. In this paper we give an internal characterization of these domains, namely, that $G$ is horo-convex if and only if any two points can be joined inside $G$ by a $C^1$ curve composed with finitely many Jordan arcs with hyperbolic curvature in $(-2,2)$. We also give a lower bound for the hyperbolic metric of horo-convex regions and some consequences.
论单位盘中环状凸域的内部特征
如果对于每一个 $\omega \in \mathbb{D}\cap \partial G$,存在一个角盘 $H$,使得 $\omega \in \partial H$,并且 $G\capH=\emptyset$, 那么单位盘 $\mathbb{D}$ 的一个适当子域 $G$ 是角环凸(角凸)的。在本文中,我们给出了角域的内部特征,即当并且仅当任意两点可以在 $G$ 内通过一条由有限多条在 $(-2,2)$ 内具有双曲曲率的乔丹弧组成的 $C^1$ 曲线相接时,$G$ 是角凸的。我们还给出了角凸区域双曲度量的下限及一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信