TESS Giants Transiting Giants. VI. Newly Discovered Hot Jupiters Provide Evidence for Efficient Obliquity Damping after the Main Sequence

Nicholas Saunders, Samuel K. Grunblatt, Ashley Chontos, Fei Dai, Daniel Huber, Jingwen Zhang, Gudmundur Stefansson, Jennifer L. van Saders, Joshua N. Winn, Daniel Hey, Andrew W. Howard, Benjamin Fulton, Howard Isaacson, Corey Beard, Steven Giacalone, Judah van Zandt, Joseph M. Akana Murphey, Malena Rice, Sarah Blunt, Emma Turtelboom, Paul A. Dalba, Jack Lubin, Casey Brinkman, Emma M. Louden, Emma Page, Cristilyn N. Watkins, Karen A. Collins, Chris Stockdale, Thiam-Guan Tan, Richard P. Schwarz, Bob Massey, Steve B. Howell, Andrew Vanderburg, George R. Ricker, Jon M. Jenkins, Sara Seager, Jessie L. Christiansen, Tansu Daylan, Ben Falk, Max Brodheim, Steven R. Gibson, Grant M. Hill, Bradford Holden, Aaron Householder, Stephen Kaye, Russ R. Laher, Kyle Lanclos, Erik A. Petigura, Arpita Roy, Ryan A. Rubenzahl, Christian Schwab, Abby P. Shaum, Martin M. Sirk, Christopher L. Smith, Josh Walawender, Sherry Yeh
{"title":"TESS Giants Transiting Giants. VI. Newly Discovered Hot Jupiters Provide Evidence for Efficient Obliquity Damping after the Main Sequence","authors":"Nicholas Saunders, Samuel K. Grunblatt, Ashley Chontos, Fei Dai, Daniel Huber, Jingwen Zhang, Gudmundur Stefansson, Jennifer L. van Saders, Joshua N. Winn, Daniel Hey, Andrew W. Howard, Benjamin Fulton, Howard Isaacson, Corey Beard, Steven Giacalone, Judah van Zandt, Joseph M. Akana Murphey, Malena Rice, Sarah Blunt, Emma Turtelboom, Paul A. Dalba, Jack Lubin, Casey Brinkman, Emma M. Louden, Emma Page, Cristilyn N. Watkins, Karen A. Collins, Chris Stockdale, Thiam-Guan Tan, Richard P. Schwarz, Bob Massey, Steve B. Howell, Andrew Vanderburg, George R. Ricker, Jon M. Jenkins, Sara Seager, Jessie L. Christiansen, Tansu Daylan, Ben Falk, Max Brodheim, Steven R. Gibson, Grant M. Hill, Bradford Holden, Aaron Householder, Stephen Kaye, Russ R. Laher, Kyle Lanclos, Erik A. Petigura, Arpita Roy, Ryan A. Rubenzahl, Christian Schwab, Abby P. Shaum, Martin M. Sirk, Christopher L. Smith, Josh Walawender, Sherry Yeh","doi":"arxiv-2407.21650","DOIUrl":null,"url":null,"abstract":"The degree of alignment between a star's spin axis and the orbital plane of\nits planets (the stellar obliquity) is related to interesting and poorly\nunderstood processes that occur during planet formation and evolution. Hot\nJupiters orbiting hot stars ($\\gtrsim$6250 K) display a wide range of\nobliquities, while similar planets orbiting cool stars are preferentially\naligned. Tidal dissipation is expected to be more rapid in stars with thick\nconvective envelopes, potentially explaining this trend. Evolved stars provide\nan opportunity to test the damping hypothesis, particularly stars that were hot\non the main sequence and have since cooled and developed deep convective\nenvelopes. We present the first systematic study of the obliquities of hot\nJupiters orbiting subgiants that recently developed convective envelopes using\nRossiter-McLaughlin observations. Our sample includes two newly discovered\nsystems in the Giants Transiting Giants Survey (TOI-6029 b, TOI-4379 b). We\nfind that the orbits of hot Jupiters orbiting subgiants that have cooled below\n$\\sim$6250 K are aligned or nearly aligned with the spin-axis of their host\nstars, indicating rapid tidal realignment after the emergence of a stellar\nconvective envelope. We place an upper limit for the timescale of realignment\nfor hot Jupiters orbiting subgiants at $\\sim$500 Myr. Comparison with a\nsimplified tidal evolution model shows that obliquity damping needs to be\n$\\sim$4 orders of magnitude more efficient than orbital period decay to damp\nthe obliquity without destroying the planet, which is consistent with recent\npredictions for tidal dissipation from inertial waves excited by hot Jupiters\non misaligned orbits.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The degree of alignment between a star's spin axis and the orbital plane of its planets (the stellar obliquity) is related to interesting and poorly understood processes that occur during planet formation and evolution. Hot Jupiters orbiting hot stars ($\gtrsim$6250 K) display a wide range of obliquities, while similar planets orbiting cool stars are preferentially aligned. Tidal dissipation is expected to be more rapid in stars with thick convective envelopes, potentially explaining this trend. Evolved stars provide an opportunity to test the damping hypothesis, particularly stars that were hot on the main sequence and have since cooled and developed deep convective envelopes. We present the first systematic study of the obliquities of hot Jupiters orbiting subgiants that recently developed convective envelopes using Rossiter-McLaughlin observations. Our sample includes two newly discovered systems in the Giants Transiting Giants Survey (TOI-6029 b, TOI-4379 b). We find that the orbits of hot Jupiters orbiting subgiants that have cooled below $\sim$6250 K are aligned or nearly aligned with the spin-axis of their host stars, indicating rapid tidal realignment after the emergence of a stellar convective envelope. We place an upper limit for the timescale of realignment for hot Jupiters orbiting subgiants at $\sim$500 Myr. Comparison with a simplified tidal evolution model shows that obliquity damping needs to be $\sim$4 orders of magnitude more efficient than orbital period decay to damp the obliquity without destroying the planet, which is consistent with recent predictions for tidal dissipation from inertial waves excited by hot Jupiters on misaligned orbits.
TESS 巨人 Transiting Giants.VI.新发现的热木星提供了主序后有效斜度阻尼的证据
恒星的自旋轴与行星轨道面之间的对齐程度(恒星倾角)与行星形成和演化过程中发生的有趣而又鲜为人知的过程有关。围绕热恒星($\gtrsim$6250 K)运行的热木星显示出很大的倾角范围,而围绕冷恒星运行的类似行星则优先对齐。在具有厚对流包层的恒星中,潮汐消散预计会更快,这有可能解释这种趋势。演化恒星提供了一个检验阻尼假说的机会,尤其是那些在主序上很热,后来冷却并形成深对流包膜的恒星。我们利用Rossiter-McLaughlin观测数据,首次系统地研究了围绕最近形成对流包层的亚巨星运行的热木星的倾角。我们的样本包括 "巨人凌星巡天"(Giants Transiting Giants Survey)中新发现的两个系统(TOI-6029 b和TOI-4379 b)。我们发现,热木星绕冷却度低于6250 K的超巨星运行时,其轨道与主星的自旋轴对齐或接近对齐,这表明在恒星对流包层出现后,潮汐会迅速重新对齐。我们将绕亚巨星运行的热木星的对准时间尺度上限定为500 Myr。与简化潮汐演化模型的比较表明,要在不摧毁行星的情况下破坏斜度,斜度阻尼需要比轨道周期衰减高出4个数量级,这与最近对热木星轨道错位激发的惯性波潮汐消散的预测是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信