An informatics method for inferring the hardening exponent of plasticity in polycrystalline metals from surface strain measurements

Stefanos Papanikolaou
{"title":"An informatics method for inferring the hardening exponent of plasticity in polycrystalline metals from surface strain measurements","authors":"Stefanos Papanikolaou","doi":"10.1186/s41313-024-00053-x","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation of strain hardening in metals is complex, with the outcome depending on experimental conditions, that may involve microstructural history, temperature and loading rate. Hardening is commonly measured, after mechanical processing, through controlled mechanical testing, in ways that either distinguish elastic (stress) from total deformation measurements, or by identifying plastic slip contributions. In this paper, we conjecture that hardening effects can be unraveled through statistical analysis of total strain fluctuations during the evolution sequence of profiles, measured <i>in-situ</i>, through digital image correlation. In particular, we hypothesize that the work hardening exponent is related, through a power-law relationship, to a particular exponent arising from principal component analysis. We demonstrate a scaling analysis for synthetic data produced by widely applicable crystal plasticity models for polycrystalline solids.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-024-00053-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-024-00053-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of strain hardening in metals is complex, with the outcome depending on experimental conditions, that may involve microstructural history, temperature and loading rate. Hardening is commonly measured, after mechanical processing, through controlled mechanical testing, in ways that either distinguish elastic (stress) from total deformation measurements, or by identifying plastic slip contributions. In this paper, we conjecture that hardening effects can be unraveled through statistical analysis of total strain fluctuations during the evolution sequence of profiles, measured in-situ, through digital image correlation. In particular, we hypothesize that the work hardening exponent is related, through a power-law relationship, to a particular exponent arising from principal component analysis. We demonstrate a scaling analysis for synthetic data produced by widely applicable crystal plasticity models for polycrystalline solids.

Graphical Abstract

从表面应变测量推断多晶金属塑性硬化指数的信息学方法
金属应变硬化的研究非常复杂,其结果取决于实验条件,可能涉及微结构历史、温度和加载速率。硬化通常是在机械加工后通过受控机械测试进行测量的,测量方法要么是区分弹性(应力)和总变形测量,要么是确定塑性滑移贡献。在本文中,我们推测硬化效应可以通过数字图像相关性对现场测量的剖面演变序列中的总应变波动进行统计分析来揭示。特别是,我们假设工作硬化指数通过幂律关系与主成分分析中产生的特定指数相关。我们展示了由广泛应用的多晶固体晶体塑性模型产生的合成数据的缩放分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信