Regularity and continuity of higher order maximal commutators

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feng Liu, Yuan Ma
{"title":"Regularity and continuity of higher order maximal commutators","authors":"Feng Liu,&nbsp;Yuan Ma","doi":"10.1007/s13324-024-00952-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\ge 1\\)</span>, <span>\\(0\\le \\alpha &lt;d\\)</span> and <span>\\(\\mathfrak {M}_{b,\\alpha }^k\\)</span> be the <i>k</i>-th order fractional maximal commutator. When <span>\\(\\alpha =0\\)</span>, we denote <span>\\(\\mathfrak {M}_{b,\\alpha }^k=\\mathfrak {M}_{b}^k\\)</span>. We show that <span>\\(\\mathfrak {M}_{b,\\alpha }^k\\)</span> is bounded from the first order Sobolev space <span>\\(W^{1,p_1}(\\mathbb {R}^d)\\)</span> to <span>\\(W^{1,p}(\\mathbb {R}^d)\\)</span> where <span>\\(1&lt;p_1,p_2,p&lt;\\infty \\)</span>, <span>\\(1/p=1/p_1+k/p_2-\\alpha /d\\)</span>. We also prove that if <span>\\(0&lt;s&lt;1\\)</span>, <span>\\(1&lt;p_1,p_2,p,q&lt;\\infty \\)</span> and <span>\\(1/p=1/p_1+k/p_2\\)</span>, then <span>\\(\\mathfrak {M}_b^k\\)</span> is bounded and continuous from the fractional Sobolev space <span>\\(W^{s,p_1}(\\mathbb {R}^d)\\)</span> to <span>\\({W^{s,p}(\\mathbb {R}^d)}\\)</span> if <span>\\(b\\in W^{s,p_2}(\\mathbb {R}^d)\\)</span>, from the inhomogeneous Triebel–Lizorkin space <span>\\(F_s^{p_1,q}(\\mathbb {R}^d)\\)</span> to <span>\\(F_s^{p,q}(\\mathbb {R}^d)\\)</span> if <span>\\(b\\in F_s^{p_2,q} (\\mathbb {R}^d)\\)</span> and from the inhomogeneous Besov space <span>\\(B_s^{p_1,q}(\\mathbb {R}^d)\\)</span> to <span>\\(B_s^{p,q}(\\mathbb {R}^d)\\)</span> if <span>\\(b\\in B_s^{p_2,q}(\\mathbb {R}^d)\\)</span>. It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel–Lizorkin spaces and Besov spaces.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00952-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(k\ge 1\), \(0\le \alpha <d\) and \(\mathfrak {M}_{b,\alpha }^k\) be the k-th order fractional maximal commutator. When \(\alpha =0\), we denote \(\mathfrak {M}_{b,\alpha }^k=\mathfrak {M}_{b}^k\). We show that \(\mathfrak {M}_{b,\alpha }^k\) is bounded from the first order Sobolev space \(W^{1,p_1}(\mathbb {R}^d)\) to \(W^{1,p}(\mathbb {R}^d)\) where \(1<p_1,p_2,p<\infty \), \(1/p=1/p_1+k/p_2-\alpha /d\). We also prove that if \(0<s<1\), \(1<p_1,p_2,p,q<\infty \) and \(1/p=1/p_1+k/p_2\), then \(\mathfrak {M}_b^k\) is bounded and continuous from the fractional Sobolev space \(W^{s,p_1}(\mathbb {R}^d)\) to \({W^{s,p}(\mathbb {R}^d)}\) if \(b\in W^{s,p_2}(\mathbb {R}^d)\), from the inhomogeneous Triebel–Lizorkin space \(F_s^{p_1,q}(\mathbb {R}^d)\) to \(F_s^{p,q}(\mathbb {R}^d)\) if \(b\in F_s^{p_2,q} (\mathbb {R}^d)\) and from the inhomogeneous Besov space \(B_s^{p_1,q}(\mathbb {R}^d)\) to \(B_s^{p,q}(\mathbb {R}^d)\) if \(b\in B_s^{p_2,q}(\mathbb {R}^d)\). It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel–Lizorkin spaces and Besov spaces.

高阶最大换元器的正则性和连续性
让 \(k\ge 1\), \(0\le \alpha <d\) 和\(\mathfrak {M}_{b,\alpha }^k\) 是 k 阶分数最大换元器。当 \(\alpha =0\) 时,我们表示 \(\mathfrak {M}_{b,\alpha }^k=\mathfrak {M}_{b}^k\)。我们证明了 \(\mathfrak {M}_{b,\alpha }^k\) 从一阶 Sobolev 空间 \(W^{1,p_1}(\mathbb {R}^d)\) 到 \(W^{1,p}(\mathbb {R}^d)\) 是有界的,其中 \(1<;p_1,p_2,p<\infty\),\(1/p=1/p_1+k/p_2-\alpha /d\)。我们还证明,如果(0<s<1\)、(1<p_1,p_2,p,q<;\and\(1/p=1/p_1+k/p_2\), then \(\mathfrak {M}_b^k\) is bounded and continuous from the fractional Sobolev space \(W^{s、p_1}(\mathbb {R}^d)}\) 到 ({W^{s,p}(\mathbb {R}^d)}\) 如果 (b\in W^{s,p_2}(\mathbb {R}^d)}\), 从不均质的 Triebel-Lizorkin 空间 (F_s^{p_1、q}(\mathbb {R}^d)\) 到 \(F_s^{p,q}(\mathbb {R}^d)\) if \(b\in F_s^{p_2,q} (\mathbb {R}^d)\) and from the inhomogeneous Besov space \(B_s^{p_1、q}(\mathbb {R}^d)\) 到 \(B_s^{p,q}(\mathbb {R}^d)\) 如果 \(b\in B_s^{p_2,q}(\mathbb {R}^d)\).需要指出的是,证明上述结果的主要内容是对高阶最大换元器的一些精细而复杂的差分估计,以及对索博列夫空间、特里贝尔-利佐金空间和贝索夫空间的一些描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信