{"title":"Regularity and continuity of higher order maximal commutators","authors":"Feng Liu, Yuan Ma","doi":"10.1007/s13324-024-00952-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\ge 1\\)</span>, <span>\\(0\\le \\alpha <d\\)</span> and <span>\\(\\mathfrak {M}_{b,\\alpha }^k\\)</span> be the <i>k</i>-th order fractional maximal commutator. When <span>\\(\\alpha =0\\)</span>, we denote <span>\\(\\mathfrak {M}_{b,\\alpha }^k=\\mathfrak {M}_{b}^k\\)</span>. We show that <span>\\(\\mathfrak {M}_{b,\\alpha }^k\\)</span> is bounded from the first order Sobolev space <span>\\(W^{1,p_1}(\\mathbb {R}^d)\\)</span> to <span>\\(W^{1,p}(\\mathbb {R}^d)\\)</span> where <span>\\(1<p_1,p_2,p<\\infty \\)</span>, <span>\\(1/p=1/p_1+k/p_2-\\alpha /d\\)</span>. We also prove that if <span>\\(0<s<1\\)</span>, <span>\\(1<p_1,p_2,p,q<\\infty \\)</span> and <span>\\(1/p=1/p_1+k/p_2\\)</span>, then <span>\\(\\mathfrak {M}_b^k\\)</span> is bounded and continuous from the fractional Sobolev space <span>\\(W^{s,p_1}(\\mathbb {R}^d)\\)</span> to <span>\\({W^{s,p}(\\mathbb {R}^d)}\\)</span> if <span>\\(b\\in W^{s,p_2}(\\mathbb {R}^d)\\)</span>, from the inhomogeneous Triebel–Lizorkin space <span>\\(F_s^{p_1,q}(\\mathbb {R}^d)\\)</span> to <span>\\(F_s^{p,q}(\\mathbb {R}^d)\\)</span> if <span>\\(b\\in F_s^{p_2,q} (\\mathbb {R}^d)\\)</span> and from the inhomogeneous Besov space <span>\\(B_s^{p_1,q}(\\mathbb {R}^d)\\)</span> to <span>\\(B_s^{p,q}(\\mathbb {R}^d)\\)</span> if <span>\\(b\\in B_s^{p_2,q}(\\mathbb {R}^d)\\)</span>. It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel–Lizorkin spaces and Besov spaces.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00952-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(k\ge 1\), \(0\le \alpha <d\) and \(\mathfrak {M}_{b,\alpha }^k\) be the k-th order fractional maximal commutator. When \(\alpha =0\), we denote \(\mathfrak {M}_{b,\alpha }^k=\mathfrak {M}_{b}^k\). We show that \(\mathfrak {M}_{b,\alpha }^k\) is bounded from the first order Sobolev space \(W^{1,p_1}(\mathbb {R}^d)\) to \(W^{1,p}(\mathbb {R}^d)\) where \(1<p_1,p_2,p<\infty \), \(1/p=1/p_1+k/p_2-\alpha /d\). We also prove that if \(0<s<1\), \(1<p_1,p_2,p,q<\infty \) and \(1/p=1/p_1+k/p_2\), then \(\mathfrak {M}_b^k\) is bounded and continuous from the fractional Sobolev space \(W^{s,p_1}(\mathbb {R}^d)\) to \({W^{s,p}(\mathbb {R}^d)}\) if \(b\in W^{s,p_2}(\mathbb {R}^d)\), from the inhomogeneous Triebel–Lizorkin space \(F_s^{p_1,q}(\mathbb {R}^d)\) to \(F_s^{p,q}(\mathbb {R}^d)\) if \(b\in F_s^{p_2,q} (\mathbb {R}^d)\) and from the inhomogeneous Besov space \(B_s^{p_1,q}(\mathbb {R}^d)\) to \(B_s^{p,q}(\mathbb {R}^d)\) if \(b\in B_s^{p_2,q}(\mathbb {R}^d)\). It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel–Lizorkin spaces and Besov spaces.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.