Bayesian technique to combine independently-trained Machine-Learning models applied to direct dark matter detection

David Cerdeno, Martin de los Rios, Andres D. Perez
{"title":"Bayesian technique to combine independently-trained Machine-Learning models applied to direct dark matter detection","authors":"David Cerdeno, Martin de los Rios, Andres D. Perez","doi":"arxiv-2407.21008","DOIUrl":null,"url":null,"abstract":"We carry out a Bayesian analysis of dark matter (DM) direct detection data to\ndetermine particle model parameters using the Truncated Marginal Neural Ratio\nEstimation (TMNRE) machine learning technique. TMNRE avoids an explicit\ncalculation of the likelihood, which instead is estimated from simulated data,\nunlike in traditional Markov Chain Monte Carlo (MCMC) algorithms. This\nconsiderably speeds up, by several orders of magnitude, the computation of the\nposterior distributions, which allows to perform the Bayesian analysis of an\notherwise computationally prohibitive number of benchmark points. In this\narticle we demonstrate that, in the TMNRE framework, it is possible to include,\ncombine, and remove different datasets in a modular fashion, which is fast and\nsimple as there is no need to re-train the machine learning algorithm or to\ndefine a combined likelihood. In order to assess the performance of this\nmethod, we consider the case of WIMP DM with spin-dependent and independent\ninteractions with protons and neutrons in a xenon experiment. After validating\nour results with MCMC, we employ the TMNRE procedure to determine the regions\nwhere the DM parameters can be reconstructed. Finally, we present CADDENA, a\nPython package that implements the modular Bayesian analysis of direct\ndetection experiments described in this work.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We carry out a Bayesian analysis of dark matter (DM) direct detection data to determine particle model parameters using the Truncated Marginal Neural Ratio Estimation (TMNRE) machine learning technique. TMNRE avoids an explicit calculation of the likelihood, which instead is estimated from simulated data, unlike in traditional Markov Chain Monte Carlo (MCMC) algorithms. This considerably speeds up, by several orders of magnitude, the computation of the posterior distributions, which allows to perform the Bayesian analysis of an otherwise computationally prohibitive number of benchmark points. In this article we demonstrate that, in the TMNRE framework, it is possible to include, combine, and remove different datasets in a modular fashion, which is fast and simple as there is no need to re-train the machine learning algorithm or to define a combined likelihood. In order to assess the performance of this method, we consider the case of WIMP DM with spin-dependent and independent interactions with protons and neutrons in a xenon experiment. After validating our results with MCMC, we employ the TMNRE procedure to determine the regions where the DM parameters can be reconstructed. Finally, we present CADDENA, a Python package that implements the modular Bayesian analysis of direct detection experiments described in this work.
将独立训练的机器学习模型应用于暗物质直接探测的贝叶斯技术
我们对暗物质(DM)直接探测数据进行了贝叶斯分析,利用截断边际神经比估计(TMNRE)机器学习技术确定粒子模型参数。与传统的马尔可夫链蒙特卡洛(MCMC)算法不同,TMNRE 避免了对似然的明确计算,而是通过模拟数据进行估计。这大大加快了后验分布的计算速度,使贝叶斯分析得以对大量基准点进行,否则计算量将大得令人望而却步。在本文中,我们证明了在 TMNRE 框架中,可以以模块化方式包含、组合和移除不同的数据集,由于无需重新训练机器学习算法或定义组合似然,因此既快速又简单。为了评估这种方法的性能,我们考虑了在氙实验中与质子和中子发生自旋依赖和独立相互作用的 WIMP DM 的情况。在用 MCMC 验证了我们的结果之后,我们采用 TMNRE 程序来确定可以重建 DM 参数的区域。最后,我们介绍了 CADDENA,它是一个 Python 软件包,用于实现本文所述的直接探测实验的模块化贝叶斯分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信