Sequence of families of lattice polarized K3 surfaces, modular forms and degrees of complex reflection groups

IF 1 3区 数学 Q1 MATHEMATICS
Atsuhira Nagano
{"title":"Sequence of families of lattice polarized K3 surfaces, modular forms and degrees of complex reflection groups","authors":"Atsuhira Nagano","doi":"10.1007/s00209-024-03562-0","DOIUrl":null,"url":null,"abstract":"<p>We introduce a sequence of families of lattice polarized <i>K</i>3 surfaces. This sequence is closely related to complex reflection groups of exceptional type. Namely, we obtain modular forms coming from the inverse correspondences of the period mappings attached to our sequence. We study a non-trivial relation between our modular forms and invariants of complex reflection groups. Especially, we consider a family concerned with the Shephard-Todd group No.34 based on arithmetic properties of lattices and algebro-geometric properties of the period mappings.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"48 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03562-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a sequence of families of lattice polarized K3 surfaces. This sequence is closely related to complex reflection groups of exceptional type. Namely, we obtain modular forms coming from the inverse correspondences of the period mappings attached to our sequence. We study a non-trivial relation between our modular forms and invariants of complex reflection groups. Especially, we consider a family concerned with the Shephard-Todd group No.34 based on arithmetic properties of lattices and algebro-geometric properties of the period mappings.

Abstract Image

晶格极化 K3 表面、模块形式和复反射群度的族序列
我们介绍了一个晶格极化 K3 曲面族序列。这个序列与特殊类型的复反射群密切相关。也就是说,我们从序列所附周期映射的反对应关系中获得了模态。我们研究了模形式与复反射群不变式之间的非微妙关系。特别是,我们基于网格的算术性质和周期映射的代数几何性质,考虑了与谢泼德-托德群(Shephard-Todd group No.34)相关的一个族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信