{"title":"A comparison of statistical learning of naturalistic textures between DCNNs and the human visual hierarchy","authors":"XinCheng Lu, ZiQi Yuan, YiChi Zhang, HaiLin Ai, SiYuan Cheng, YiRan Ge, Fang Fang, NiHong Chen","doi":"10.1007/s11431-024-2748-3","DOIUrl":null,"url":null,"abstract":"<p>The visual system continuously adapts to the statistical properties of the environment. Existing evidence shows a close resemblance between deep convolutional neural networks (CNNs) and primate visual stream in neural selectivity to naturalistic textures above the primary visual processing stage. This study delves into the mechanisms of perceptual learning in CNNs, focusing on how they assimilate the high-order statistics of natural textures. Our results show that a CNN model achieves a similar performance improvement as humans, as manifested in the learning pattern across different types of high-order image statistics. While L2 was the first stage exhibiting texture selectivity, we found that stages beyond L2 were critically involved in learning. The significant contribution of L4 to learning was manifested both in the modulations of texture-selective responses and in the consequences of training with frozen connection weights. Our findings highlight learning-dependent plasticity in the mid-to-high-level areas of the visual hierarchy. This research introduces an AI-inspired approach for studying learning-induced cortical plasticity, utilizing DCNNs as an experimental framework to formulate testable predictions for empirical brain studies.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"73 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2748-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The visual system continuously adapts to the statistical properties of the environment. Existing evidence shows a close resemblance between deep convolutional neural networks (CNNs) and primate visual stream in neural selectivity to naturalistic textures above the primary visual processing stage. This study delves into the mechanisms of perceptual learning in CNNs, focusing on how they assimilate the high-order statistics of natural textures. Our results show that a CNN model achieves a similar performance improvement as humans, as manifested in the learning pattern across different types of high-order image statistics. While L2 was the first stage exhibiting texture selectivity, we found that stages beyond L2 were critically involved in learning. The significant contribution of L4 to learning was manifested both in the modulations of texture-selective responses and in the consequences of training with frozen connection weights. Our findings highlight learning-dependent plasticity in the mid-to-high-level areas of the visual hierarchy. This research introduces an AI-inspired approach for studying learning-induced cortical plasticity, utilizing DCNNs as an experimental framework to formulate testable predictions for empirical brain studies.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.