Rescattering of stimulated Raman side scattering in nonuniform plasmas

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
S. Tan, Q. Wang, Y. Chen, W. B. Yao, C. Z. Xiao, J. F. Myatt
{"title":"Rescattering of stimulated Raman side scattering in nonuniform plasmas","authors":"S. Tan, Q. Wang, Y. Chen, W. B. Yao, C. Z. Xiao, J. F. Myatt","doi":"10.1063/5.0206740","DOIUrl":null,"url":null,"abstract":"Rescattering of stimulated Raman side scattering (SRSS) is observed for the first time via two-dimensional (2D) particle-in-cell (PIC) simulations. We construct a theoretical model for the rescattering process, which can predict the region of occurrence of mth-order SRSS and estimate its threshold. The rescattering process is identified by the 2D PIC simulations under typical conditions of a direct-drive inertial confinement fusion scheme. Hot electrons produced by second-order SRSS propagate nearly perpendicular to the density gradient and gain nearly the same energy as in first-order SRSS, but there is no cascade acceleration to produce superhot electrons. Parametric studies for a wide range of ignition conditions show that SRSS and associated rescatterings are robust and important processes in inertial confinement fusion.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206740","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rescattering of stimulated Raman side scattering (SRSS) is observed for the first time via two-dimensional (2D) particle-in-cell (PIC) simulations. We construct a theoretical model for the rescattering process, which can predict the region of occurrence of mth-order SRSS and estimate its threshold. The rescattering process is identified by the 2D PIC simulations under typical conditions of a direct-drive inertial confinement fusion scheme. Hot electrons produced by second-order SRSS propagate nearly perpendicular to the density gradient and gain nearly the same energy as in first-order SRSS, but there is no cascade acceleration to produce superhot electrons. Parametric studies for a wide range of ignition conditions show that SRSS and associated rescatterings are robust and important processes in inertial confinement fusion.
非均匀等离子体中受激拉曼侧散射的再散射
通过二维(2D)粒子入胞(PIC)模拟,我们首次观测到了受激拉曼侧散射(SRSS)的再散射。我们构建了再散射过程的理论模型,可以预测 mth 阶 SRSS 的发生区域并估计其阈值。在直接驱动惯性约束聚变方案的典型条件下,通过二维 PIC 模拟确定了再散射过程。二阶 SRSS 产生的热电子几乎垂直于密度梯度传播,并获得与一阶 SRSS 几乎相同的能量,但没有级联加速产生超热电子。对各种点火条件的参数研究表明,SRSS 和相关的再散射是惯性约束聚变中稳健而重要的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信