Proximal Langevin Sampling with Inexact Proximal Mapping

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Matthias J. Ehrhardt, Lorenz Kuger, Carola-Bibiane Schönlieb
{"title":"Proximal Langevin Sampling with Inexact Proximal Mapping","authors":"Matthias J. Ehrhardt, Lorenz Kuger, Carola-Bibiane Schönlieb","doi":"10.1137/23m1593565","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1729-1760, September 2024. <br/> Abstract. In order to solve tasks like uncertainty quantification or hypothesis tests in Bayesian imaging inverse problems, we often have to draw samples from the arising posterior distribution. For the usually log-concave but high-dimensional posteriors, Markov chain Monte Carlo methods based on time discretizations of Langevin diffusion are a popular tool. If the potential defining the distribution is nonsmooth, these discretizations are usually of an implicit form leading to Langevin sampling algorithms that require the evaluation of proximal operators. For some of the potentials relevant in imaging problems this is only possible approximately using an iterative scheme. We investigate the behavior of a proximal Langevin algorithm under the presence of errors in the evaluation of proximal mappings. We generalize existing nonasymptotic and asymptotic convergence results of the exact algorithm to our inexact setting and quantify the bias between the target and the algorithm’s stationary distribution due to the errors. We show that the additional bias stays bounded for bounded errors and converges to zero for decaying errors in a strongly convex setting. We apply the inexact algorithm to sample numerically from the posterior of typical imaging inverse problems in which we can only approximate the proximal operator by an iterative scheme and validate our theoretical convergence results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1593565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1729-1760, September 2024.
Abstract. In order to solve tasks like uncertainty quantification or hypothesis tests in Bayesian imaging inverse problems, we often have to draw samples from the arising posterior distribution. For the usually log-concave but high-dimensional posteriors, Markov chain Monte Carlo methods based on time discretizations of Langevin diffusion are a popular tool. If the potential defining the distribution is nonsmooth, these discretizations are usually of an implicit form leading to Langevin sampling algorithms that require the evaluation of proximal operators. For some of the potentials relevant in imaging problems this is only possible approximately using an iterative scheme. We investigate the behavior of a proximal Langevin algorithm under the presence of errors in the evaluation of proximal mappings. We generalize existing nonasymptotic and asymptotic convergence results of the exact algorithm to our inexact setting and quantify the bias between the target and the algorithm’s stationary distribution due to the errors. We show that the additional bias stays bounded for bounded errors and converges to zero for decaying errors in a strongly convex setting. We apply the inexact algorithm to sample numerically from the posterior of typical imaging inverse problems in which we can only approximate the proximal operator by an iterative scheme and validate our theoretical convergence results.
近端朗格文采样与非精确近端映射
SIAM 影像科学杂志》,第 17 卷第 3 期,第 1729-1760 页,2024 年 9 月。 摘要为了解决贝叶斯成像逆问题中的不确定性量化或假设检验等任务,我们经常需要从产生的后验分布中抽取样本。对于通常是对数凹的高维后验分布,基于朗之文扩散时间离散的马尔科夫链蒙特卡罗方法是一种常用工具。如果定义分布的势是非光滑的,这些离散通常是隐式的,从而导致需要评估近算子的朗格文采样算法。对于成像问题中的某些相关势,只能使用迭代方案进行近似计算。我们研究了近似 Langevin 算法在近似映射评估存在误差的情况下的行为。我们将精确算法的现有非渐近和渐近收敛结果推广到我们的非精确设置中,并量化了目标与算法静态分布之间因误差而产生的偏差。我们证明,在强凸设置中,对于有界误差,额外偏差保持有界;对于衰减误差,额外偏差收敛为零。我们将非精确算法应用于典型成像逆问题的后验数值采样,在这些问题中,我们只能通过迭代方案近似近端算子,并验证了我们的理论收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信