Macrophage manufacturing and engineering with 5’-Cap1 and N1-methylpseudouridine-modified mRNA

IF 4.6 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
{"title":"Macrophage manufacturing and engineering with 5’-Cap1 and N1-methylpseudouridine-modified mRNA","authors":"","doi":"10.1016/j.omtm.2024.101307","DOIUrl":null,"url":null,"abstract":"<p>Macrophage-based cell therapeutics are an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfill their therapeutical potential. Here, we establish a robust macrophage manufacturing platform (Mo-Mac), and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that &gt;90% cells in the final product were macrophages, and the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes and hematopoietic stem cells. This analysis also guided the development of flow cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example, we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophage facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage manufacturing process, and indicate that macrophage can be engineered by versatile mRNA technology to achieve therapeutic goals.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101307","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophage-based cell therapeutics are an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfill their therapeutical potential. Here, we establish a robust macrophage manufacturing platform (Mo-Mac), and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages, and the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes and hematopoietic stem cells. This analysis also guided the development of flow cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example, we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophage facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage manufacturing process, and indicate that macrophage can be engineered by versatile mRNA technology to achieve therapeutic goals.

Abstract Image

利用 5'-Cap1 和 N1-甲基假尿苷修饰的 mRNA 制造和改造巨噬细胞
基于巨噬细胞的细胞疗法是一种治疗癌症和修复组织损伤的新兴模式。可重复的制造和工程过程是发挥其治疗潜力的关键。在这里,我们建立了一个强大的巨噬细胞制造平台(Mo-Mac),并证明巨噬细胞的功能可以通过N1-甲基假尿苷(m1Ψ)修饰的mRNA来增强。利用单细胞转录组分析这一无偏见的方法,我们发现最终产品中 90% 的细胞是巨噬细胞,其余主要包括 T 细胞、B 细胞、自然杀伤细胞、原核细胞、原核细胞和造血干细胞。这项分析还指导了流式细胞术策略的开发,以评估制成品中的细胞组成,从而满足国家医药产品管理局的要求。为了调节巨噬细胞的功能,我们研究了是否可以通过 mRNA 技术增强巨噬细胞的吞噬能力。我们发现,在体外用 m1Ψ 修饰的编码 CD300LF 的 mRNA(CD300LF-mRNA-巨噬细胞)电穿孔巨噬细胞时,其吞噬能力会增强。同样,在急性肝功能衰竭的小鼠模型中,CD300LF-mRNA-巨噬细胞有助于器官从对乙酰氨基酚诱导的肝毒性中恢复过来。这些结果证明了符合 GMP 标准的巨噬细胞制造工艺,并表明巨噬细胞可以通过多功能 mRNA 技术来实现治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy-Methods & Clinical Development
Molecular Therapy-Methods & Clinical Development Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.90
自引率
4.30%
发文量
163
审稿时长
12 weeks
期刊介绍: The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella. Topics of particular interest within the journal''s scope include: Gene vector engineering and production, Methods for targeted genome editing and engineering, Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells, Methods for gene and cell vector delivery, Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine, Analysis of gene and cell vector biodistribution and tracking, Pharmacology/toxicology studies of new and next-generation vectors, Methods for cell isolation, engineering, culture, expansion, and transplantation, Cell processing, storage, and banking for therapeutic application, Preclinical and QC/QA assay development, Translational and clinical scale-up and Good Manufacturing procedures and process development, Clinical protocol development, Computational and bioinformatic methods for analysis, modeling, or visualization of biological data, Negotiating the regulatory approval process and obtaining such approval for clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信