General estimation results for tdVARMA array models

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdelkamel Alj, Rajae Azrak, Guy Mélard
{"title":"General estimation results for tdVARMA array models","authors":"Abdelkamel Alj,&nbsp;Rajae Azrak,&nbsp;Guy Mélard","doi":"10.1111/jtsa.12761","DOIUrl":null,"url":null,"abstract":"<p>The article will focus on vector autoregressive-moving average (VARMA) models with time-dependent coefficients (td) to represent general nonstationary time series, not necessarily Gaussian. The coefficients depend on time, possibly on the length of the series <span></span><math>\n <mrow>\n <mi>n</mi>\n </mrow></math>, hence the name tdVARMA<span></span><math>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow></math> for the models, but not necessarily on the rescaled time <span></span><math>\n <mrow>\n <mi>t</mi>\n <mo>/</mo>\n <mi>n</mi>\n </mrow></math>. As a consequence of the dependency on <span></span><math>\n <mrow>\n <mi>n</mi>\n </mrow></math> of the model, we need to consider array processes instead of stochastic processes. Under appropriate assumptions, it is shown that a Gaussian quasi-maximum likelihood estimator is consistent in probability and asymptotically normal. The theoretical results are illustrated using three examples of bivariate processes, the first two with marginal heteroscedasticity. The first example is a tdVAR<span></span><math>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow></math>(1) process while the second example is a tdVMA<span></span><math>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow></math>(1) process. In these two cases, the finite-sample behavior is checked via a Monte Carlo simulation study. The results are compatible with the asymptotic properties even for small <span></span><math>\n <mrow>\n <mi>n</mi>\n </mrow></math>. A third example shows the application of the tdVARMA<span></span><math>\n <mrow>\n <msup>\n <mrow>\n <mo> </mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow></math> models for a real time series.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 1","pages":"137-151"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12761","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The article will focus on vector autoregressive-moving average (VARMA) models with time-dependent coefficients (td) to represent general nonstationary time series, not necessarily Gaussian. The coefficients depend on time, possibly on the length of the series n , hence the name tdVARMA ( n ) for the models, but not necessarily on the rescaled time t / n . As a consequence of the dependency on n of the model, we need to consider array processes instead of stochastic processes. Under appropriate assumptions, it is shown that a Gaussian quasi-maximum likelihood estimator is consistent in probability and asymptotically normal. The theoretical results are illustrated using three examples of bivariate processes, the first two with marginal heteroscedasticity. The first example is a tdVAR ( n ) (1) process while the second example is a tdVMA ( n ) (1) process. In these two cases, the finite-sample behavior is checked via a Monte Carlo simulation study. The results are compatible with the asymptotic properties even for small n . A third example shows the application of the tdVARMA ( n ) models for a real time series.

tdVARMA阵列模型的一般估算结果
本文将重点讨论具有随时间变化的系数(td)的向量自回归移动平均(VARMA)模型,以表示不一定是高斯的一般非平稳时间序列。这些系数取决于时间,也可能取决于序列的长度,因此模型被称为tdVARMA,但不一定取决于重新标定的时间。由于模型的依赖性,我们需要考虑阵列过程而不是随机过程。在适当的假设条件下,可以证明高斯准极大似然估计器在概率上是一致的,并且渐近正态。我们用三个双变量过程的例子来说明理论结果,前两个例子具有边际异方差性。第一个例子是一个 tdVAR(1) 过程,第二个例子是一个 tdVMA(1) 过程。在这两种情况下,通过蒙特卡罗模拟研究检验了有限样本行为。结果与渐近特性相吻合,即使是很小的......。第三个例子展示了tdVARMA 模型在实际时间序列中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信