{"title":"Numerical solution of convected wave equation in free field using artificial boundary method","authors":"Xin Wang, Jihong Wang, Yana Di, Jiwei Zhang","doi":"10.1002/num.23131","DOIUrl":null,"url":null,"abstract":"In this article, we propose two procedures focusing on the computation of the time‐dependent convected wave equation in a free field with a uniform background flow. Both procedures are based on a framework, expended from Du et al. (SIAM J. Sci. Comput. 40 (2018), A1430–A1445.), of constructing the Dirichlet‐to‐Dirichlet (DtD)‐type discrete absorbing boundary conditions (ABCs). The first procedure is dedicated to reducing the infinite problem into a finite problem by a direct application of the framework on the finite difference discretization of the convected wave equation. However, the presence of convection terms makes the stability analysis hard to implement, which motivates us to develop the second procedure. First, the convected wave equation is transformed into a standard wave equation by using the Prandtl‐Glauert‐Lorentz transformation. After that, we obtain the DtD‐type ABC by using the above framework, and on this basis, derive an equivalent Dirichlet‐to‐Neumann‐type ABCs, which makes stability and convergence analysis easy to be obtained by the classical energy method. The effectiveness and comparison of these two procedures are investigated through numerical experiments.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"47 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we propose two procedures focusing on the computation of the time‐dependent convected wave equation in a free field with a uniform background flow. Both procedures are based on a framework, expended from Du et al. (SIAM J. Sci. Comput. 40 (2018), A1430–A1445.), of constructing the Dirichlet‐to‐Dirichlet (DtD)‐type discrete absorbing boundary conditions (ABCs). The first procedure is dedicated to reducing the infinite problem into a finite problem by a direct application of the framework on the finite difference discretization of the convected wave equation. However, the presence of convection terms makes the stability analysis hard to implement, which motivates us to develop the second procedure. First, the convected wave equation is transformed into a standard wave equation by using the Prandtl‐Glauert‐Lorentz transformation. After that, we obtain the DtD‐type ABC by using the above framework, and on this basis, derive an equivalent Dirichlet‐to‐Neumann‐type ABCs, which makes stability and convergence analysis easy to be obtained by the classical energy method. The effectiveness and comparison of these two procedures are investigated through numerical experiments.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.