{"title":"The possible KK¯* and DD¯* bound and resonance states by solving the Schrodinger equation","authors":"Bao-Xi Sun, Qin-Qin Cao, Ying-Tai Sun","doi":"10.1088/1572-9494/ad51df","DOIUrl":null,"url":null,"abstract":"The Schrodinger equation with a Yukawa type of potential is solved analytically. When different boundary conditions are taken into account, a series of solutions are indicated as a Bessel function, the first kind of Hankel function and the second kind of Hankel function, respectively. Subsequently, the scattering processes of <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> are investigated. In the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sector, the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1285) particle is treated as a <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> bound state, therefore, the coupling constant in the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Yukawa potential can be fixed according to the binding energy of the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1285) particle. Consequently, a <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> resonance state is generated by solving the Schrodinger equation with the outgoing wave condition, which lies at 1417 − i18 MeV on the complex energy plane. It is reasonable to assume that the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> resonance state at 1417 − i18 MeV might correspond to the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1420) particle in the review of the Particle Data Group. In the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sector, since the <italic toggle=\"yes\">X</italic>(3872) particle is almost located at the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> threshold, its binding energy is approximately equal to zero. Therefore, the coupling constant in the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn14.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Yukawa potential is determined, which is related to the first zero point of the zero-order Bessel function. Similarly to the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn15.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> case, four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition. It is assumed that the resonance states at 3885 − i1 MeV, 4029 − i108 MeV, 4328 − i191 MeV and 4772 − <italic toggle=\"yes\">i</italic>267 MeV might be associated with the <italic toggle=\"yes\">Zc</italic>(3900), the <italic toggle=\"yes\">X</italic>(3940), the <italic toggle=\"yes\">χ</italic>\n<sub>\n<italic toggle=\"yes\">c</italic>1</sub>(4274) and <italic toggle=\"yes\">χ</italic>\n<sub>\n<italic toggle=\"yes\">c</italic>1</sub>(4685) particles, respectively. It is noted that all solutions are isospin degenerate.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"174 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad51df","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Schrodinger equation with a Yukawa type of potential is solved analytically. When different boundary conditions are taken into account, a series of solutions are indicated as a Bessel function, the first kind of Hankel function and the second kind of Hankel function, respectively. Subsequently, the scattering processes of KK¯* and DD¯* are investigated. In the KK¯* sector, the f1(1285) particle is treated as a KK¯* bound state, therefore, the coupling constant in the KK¯* Yukawa potential can be fixed according to the binding energy of the f1(1285) particle. Consequently, a KK¯* resonance state is generated by solving the Schrodinger equation with the outgoing wave condition, which lies at 1417 − i18 MeV on the complex energy plane. It is reasonable to assume that the KK¯* resonance state at 1417 − i18 MeV might correspond to the f1(1420) particle in the review of the Particle Data Group. In the DD¯* sector, since the X(3872) particle is almost located at the DD¯* threshold, its binding energy is approximately equal to zero. Therefore, the coupling constant in the DD¯* Yukawa potential is determined, which is related to the first zero point of the zero-order Bessel function. Similarly to the KK¯* case, four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition. It is assumed that the resonance states at 3885 − i1 MeV, 4029 − i108 MeV, 4328 − i191 MeV and 4772 − i267 MeV might be associated with the Zc(3900), the X(3940), the χc1(4274) and χc1(4685) particles, respectively. It is noted that all solutions are isospin degenerate.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.