Convergence of Entropy-Regularized Natural Policy Gradient with Linear Function Approximation

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Semih Cayci, Niao He, R. Srikant
{"title":"Convergence of Entropy-Regularized Natural Policy Gradient with Linear Function Approximation","authors":"Semih Cayci, Niao He, R. Srikant","doi":"10.1137/22m1540156","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2729-2755, September 2024. <br/> Abstract. Natural policy gradient (NPG) methods, equipped with function approximation and entropy regularization, achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the persistence of excitation condition, and achieves a fast convergence rate of [math] up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits linear convergence up to the compatible function approximation error. Finally, we provide sample complexity results for sample-based NPG with entropy regularization.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"171 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1540156","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 2729-2755, September 2024.
Abstract. Natural policy gradient (NPG) methods, equipped with function approximation and entropy regularization, achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the persistence of excitation condition, and achieves a fast convergence rate of [math] up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits linear convergence up to the compatible function approximation error. Finally, we provide sample complexity results for sample-based NPG with entropy regularization.
采用线性函数逼近的熵细化自然策略梯度的收敛性
SIAM 优化期刊》,第 34 卷第 3 期,第 2729-2755 页,2024 年 9 月。 摘要自然策略梯度(NPG)方法配备了函数逼近和熵正则化,在具有大型状态-动作空间的强化学习问题上取得了令人印象深刻的经验成功。然而,在函数逼近机制中,它们的收敛特性和熵正则化的影响仍然难以捉摸。在本文中,我们建立了软最大参数化条件下线性函数逼近的熵正则化 NPG 的有限时间收敛分析。特别是,我们证明了带平均化的熵规整 NPG 满足激励持久性条件,并在规整马尔可夫决策过程中实现了函数近似误差以内 [math] 的快速收敛率。这一收敛结果不需要对策略做任何先验假设。此外,在同调系数和基向量的温和正则性条件下,我们证明了熵正则化 NPG 在兼容函数近似误差范围内表现出线性收敛性。最后,我们提供了基于样本的熵正则化 NPG 的样本复杂度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信