StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset

Chaofan Huo, Ye Shi, Yuexin Ma, Lan Xu, Jingyi Yu, Jingya Wang
{"title":"StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset","authors":"Chaofan Huo, Ye Shi, Yuexin Ma, Lan Xu, Jingyi Yu, Jingya Wang","doi":"arxiv-2407.20545","DOIUrl":null,"url":null,"abstract":"Modeling and capturing the 3D spatial arrangement of the human and the object\nis the key to perceiving 3D human-object interaction from monocular images. In\nthis work, we propose to use the Human-Object Offset between anchors which are\ndensely sampled from the surface of human mesh and object mesh to represent\nhuman-object spatial relation. Compared with previous works which use contact\nmap or implicit distance filed to encode 3D human-object spatial relations, our\nmethod is a simple and efficient way to encode the highly detailed spatial\ncorrelation between the human and object. Based on this representation, we\npropose Stacked Normalizing Flow (StackFLOW) to infer the posterior\ndistribution of human-object spatial relations from the image. During the\noptimization stage, we finetune the human body pose and object 6D pose by\nmaximizing the likelihood of samples based on this posterior distribution and\nminimizing the 2D-3D corresponding reprojection loss. Extensive experimental\nresults show that our method achieves impressive results on two challenging\nbenchmarks, BEHAVE and InterCap datasets.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling and capturing the 3D spatial arrangement of the human and the object is the key to perceiving 3D human-object interaction from monocular images. In this work, we propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation. Compared with previous works which use contact map or implicit distance filed to encode 3D human-object spatial relations, our method is a simple and efficient way to encode the highly detailed spatial correlation between the human and object. Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image. During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples based on this posterior distribution and minimizing the 2D-3D corresponding reprojection loss. Extensive experimental results show that our method achieves impressive results on two challenging benchmarks, BEHAVE and InterCap datasets.
StackFLOW:通过带偏移的叠加归一化流进行单目人-物重构
建模和捕捉人与物体的三维空间排列是通过单目图像感知三维人与物体交互的关键。在这项工作中,我们建议使用从人类网格和物体网格表面密集采样的锚点之间的人-物偏移来表示人-物空间关系。与之前使用接触图或隐式距离锉来编码三维人-物空间关系的工作相比,我们的方法是一种简单而有效的方法来编码人与物体之间高度精细的空间关系。在此基础上,我们提出了堆栈归一化流(Stacked Normalizing Flow,StackFLOW)来推断图像中人-物空间关系的后向分布。在优化阶段,我们根据后验分布最大化样本的可能性,并最小化 2D-3D 相应的重投影损失,从而对人体姿态和物体的 6D 姿态进行微调。广泛的实验结果表明,我们的方法在 BEHAVE 和 InterCap 数据集这两个具有挑战性的基准测试中取得了令人印象深刻的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信