Omnia H. Abdelkarim, Rene H. Wijffels, Maria J. Barbosa
{"title":"Microalgal lipid production: A comparative analysis of Nannochloropsis and Microchloropsis strains","authors":"Omnia H. Abdelkarim, Rene H. Wijffels, Maria J. Barbosa","doi":"10.1007/s10811-024-03318-7","DOIUrl":null,"url":null,"abstract":"<p>The oleaginous genera <i>Nannochloropsis</i> and <i>Microchloropsis</i> are recognized for their lipid accumulation capacity. Microalgal lipid accumulation is triggered by nitrogen starvation, negatively affecting photosynthesis and growth. Moreover, light and temperature play pivotal roles in microalgal physiology, lipid accumulation and composition. This study focuses on comparing the responses of eight microalgal strains from <i>Nannochloropsis (N. oceanica </i>Necton<i>, N. oceanica </i>IMET1<i>, Nannochloropsis. </i>sp<i>. </i>CCAP211/78<i>, N. oculata, </i>and<i> N. limnetica)</i> and <i>Microchloropsis (M.</i> <i>gaditana</i> CCFM01, <i>M.</i> <i>gaditana</i> CCMP526, and <i>M.</i> <i>salina</i>) to light, temperature, and nitrogen availability. Biomass, lipid content and productivities were monitored under different light intensities (150 (LL) and 600 μmol photons m<sup>−2</sup> s<sup>−1</sup> (HL)) and temperatures (15, 25, 30℃) under nitrogen (N-) starvation and replete conditions. Under N-starvation and HL, <i>N.</i> sp<i>.</i> exhibited the highest lipid content (59%) and productivity (0.069 g L<sup>-1</sup> day<sup>-1</sup>), while <i>N. oculata</i> had the lowest lipid content (37.5%) and productivity (0.037 g L<sup>-1</sup> day<sup>-1</sup>) among the eight strains. Notably, <i>M. gaditana</i> CCFM01 achieved the highest EPA content (4.7%), contrasting with <i>N.</i> <i>oceanica</i> IMET1 lowest EPA content (2.9%) under 150 μmol photons m<sup>−2</sup> s<sup>−1</sup> and N-repletion. The response to temperature fluctuations under LL was strain-dependent. <i>Microchloropsis salina</i> and <i>M. gaditana</i> CCFM01 demonstrated the highest and lowest lipid productivities (0.069 g L<sup>-1</sup> day<sup>-1</sup> and 0.022 g L<sup>-1</sup> day<sup>-1</sup>, respectively) at 15℃ under N-starvation. Moreover, significant EPA accumulation across various strains was observed in <i>N. oculata</i> (5.7%) under N-repletion at 15°C, surpassing <i>M. gaditana</i> CCFM01 by 40%. Ultimately, the physiological responses to cultivation conditions vary markedly among microalgal strains, even within the same genus or species. This knowledge is essential for selecting suitable strains for the efficient microalgal lipid production industry.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Optimi zing cultivation conditions for the maximal lipid production in Nannochloropsis andMicrochloropsis\n</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03318-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The oleaginous genera Nannochloropsis and Microchloropsis are recognized for their lipid accumulation capacity. Microalgal lipid accumulation is triggered by nitrogen starvation, negatively affecting photosynthesis and growth. Moreover, light and temperature play pivotal roles in microalgal physiology, lipid accumulation and composition. This study focuses on comparing the responses of eight microalgal strains from Nannochloropsis (N. oceanica Necton, N. oceanica IMET1, Nannochloropsis. sp. CCAP211/78, N. oculata, and N. limnetica) and Microchloropsis (M.gaditana CCFM01, M.gaditana CCMP526, and M.salina) to light, temperature, and nitrogen availability. Biomass, lipid content and productivities were monitored under different light intensities (150 (LL) and 600 μmol photons m−2 s−1 (HL)) and temperatures (15, 25, 30℃) under nitrogen (N-) starvation and replete conditions. Under N-starvation and HL, N. sp. exhibited the highest lipid content (59%) and productivity (0.069 g L-1 day-1), while N. oculata had the lowest lipid content (37.5%) and productivity (0.037 g L-1 day-1) among the eight strains. Notably, M. gaditana CCFM01 achieved the highest EPA content (4.7%), contrasting with N.oceanica IMET1 lowest EPA content (2.9%) under 150 μmol photons m−2 s−1 and N-repletion. The response to temperature fluctuations under LL was strain-dependent. Microchloropsis salina and M. gaditana CCFM01 demonstrated the highest and lowest lipid productivities (0.069 g L-1 day-1 and 0.022 g L-1 day-1, respectively) at 15℃ under N-starvation. Moreover, significant EPA accumulation across various strains was observed in N. oculata (5.7%) under N-repletion at 15°C, surpassing M. gaditana CCFM01 by 40%. Ultimately, the physiological responses to cultivation conditions vary markedly among microalgal strains, even within the same genus or species. This knowledge is essential for selecting suitable strains for the efficient microalgal lipid production industry.
Graphical Abstract
Optimi zing cultivation conditions for the maximal lipid production in Nannochloropsis andMicrochloropsis
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.