The Dirichlet principle for the complex $k$-Hessian functional

IF 0.7 4区 数学 Q2 MATHEMATICS
Wang,Yi, Xu,Hang
{"title":"The Dirichlet principle for the complex $k$-Hessian functional","authors":"Wang,Yi, Xu,Hang","doi":"10.4310/cag.2023.v31.n10.a7","DOIUrl":null,"url":null,"abstract":"We study the variational structure of the complex $k$-Hessian equation on bounded domain $X\\subset \\mathbb C^{n}$ with boundary $M=\\partial X$. We prove that the Dirichlet problem $\\sigma _{k} (\\partial \\bar{\\partial} u) =0$ in $X$, and $u=f$ on $M$ is variational and we give an explicit construction of the associated functional $ \\mathcal{E}_{k}(u)$. Moreover we prove $ \\mathcal{E}_{k}(u)$ satisfies the Dirichlet principle. In a special case when $k=2$, our constructed functional $ \\mathcal{E}_{2}(u)$ involves the Hermitian mean curvature of the boundary, the notion first introduced and studied by X. Wang [37]. Earlier work of J. Case and and the first author of this article [9] introduced a boundary operator for the (real) $k$-Hessian functional which satisfies the Dirichlet principle. The present paper shows that there is a parallel picture in the complex setting.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"74 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the variational structure of the complex $k$-Hessian equation on bounded domain $X\subset \mathbb C^{n}$ with boundary $M=\partial X$. We prove that the Dirichlet problem $\sigma _{k} (\partial \bar{\partial} u) =0$ in $X$, and $u=f$ on $M$ is variational and we give an explicit construction of the associated functional $ \mathcal{E}_{k}(u)$. Moreover we prove $ \mathcal{E}_{k}(u)$ satisfies the Dirichlet principle. In a special case when $k=2$, our constructed functional $ \mathcal{E}_{2}(u)$ involves the Hermitian mean curvature of the boundary, the notion first introduced and studied by X. Wang [37]. Earlier work of J. Case and and the first author of this article [9] introduced a boundary operator for the (real) $k$-Hessian functional which satisfies the Dirichlet principle. The present paper shows that there is a parallel picture in the complex setting.
复$k$-Hessian函数的狄利克特原理
我们研究了边界为 $M=\partial X$ 的有界域 $X\subset \mathbb C^{n}$ 上复 $k$-Hessian 方程的变分结构。我们证明了德里赫特问题 $\sigma _{k}(\partial \bar{partial} u) =0$ in $X$, and $u=f$ on $M$ is variational and we give an explicit construction of the associated functional $ \mathcal{E}_{k}(u)$.此外,我们还证明 $ \mathcal{E}_{k}(u)$ 满足德里赫特原理。在 $k=2$ 的特殊情况下,我们构造的函数 $ \mathcal{E}_{2}(u)$ 涉及边界的赫尔墨斯平均曲率,这一概念由王旭东首次提出并研究[37]。J. Case 和本文第一作者的早期研究[9]为(实)$k$-Hessian 函数引入了一个满足狄利克特原理的边界算子。本文表明,在复数环境中也有类似的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信