Circular spherical divisors and their contact topology

Pub Date : 2024-07-29 DOI:10.4310/cag.2023.v31.n10.a2
Li,Tian-Jun, Mak,Cheuk Yu, Min,Jie
{"title":"Circular spherical divisors and their contact topology","authors":"Li,Tian-Jun, Mak,Cheuk Yu, Min,Jie","doi":"10.4310/cag.2023.v31.n10.a2","DOIUrl":null,"url":null,"abstract":"This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit Betti number bounds for Stein fillings of its boundary contact torus bundle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit Betti number bounds for Stein fillings of its boundary contact torus bundle.
分享
查看原文
圆球形除法及其接触拓扑学
本文研究了与圆球面骰子相关的交映拓扑学和接触拓扑学。我们对所有可以交映嵌入封闭交映 4-manifold的凹圆球卜元 $ D $ 进行了分类(直到环等价),并证明如果它们的补集是最小的,它们都可以实现为交映 log Calabi-Yau 对。然后,我们确定了这种 $D$ 的边界环束的所有最小交映填充的 Steinability 和有理同调类型。当 $ D $ 是反谐和凸时,我们给出了其边界接触环束的斯坦因填充的明确贝蒂数边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信